115 research outputs found

    Solids Accumulation Scouting Studies

    Get PDF
    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom

    NITRATE CONVERSION OF HB-LINE REILLEXTM HPQ RESIN

    Get PDF
    Reillex{trademark} HPQ ion exchange resin is used by HB Line to remove plutonium from aqueous streams. Reillex{trademark} HPQ resin currently available from Vertellus Specialties LLC is a chloride ionic form, which can cause stress corrosion cracking in stainless steels. Therefore, HB Line Engineering requested that Savannah River National Laboratory (SRNL) convert resin from chloride form to nitrate form in the Engineering Development Laboratory (EDL). To perform this task, SRNL treated two batches of resin in 2012. The first batch of resin from Reilly Industries Batch 80302MA was initially treated at SRNL in 2001 to remove chloride. This batch of resin, nominally 30 liters, has been stored wet in carboys since that time until being retreated in 2012. The second batch of resin from Batch 23408 consisted of 50 kg of new resin purchased from Vertellus Specialties in 2012. Both batches were treated in a column designed to convert resin using downflow of 1.0 M sodium nitrate solution through the resin bed followed by rinsing with deionized water. Both batches were analyzed for chloride concentration, before and after treatment, using Neutron Activation Analysis (NAA). The resin specification [Werling, 2003] states the total chlorine and chloride concentration shall be less than 250 ppm. The resin condition for measuring this concentration is not specified; however, in service the resin would always be fully wet. Measurements in SRNL showed that changing from oven dry resin to fully wet resin, with liquid in the particle interstices but no supernatant, increases the total weight by a factor of at least three. Therefore, concentration of chlorine or chloride expressed as parts per million (ppm) decreases by a factor of three. Therefore, SRNL recommends measuring chlorine concentration on an oven dry basis, then dividing by three to estimate chloride concentration in the fully wet condition. Chloride concentration in the first batch (No.80302MA) was nearly the same before the current treatment (759 ppm dry) and after treatment (745 ppm dry or {approx}248 ppm wet). Treatment of the second batch of resin (No.23408) was very successful. Chloride concentration decreased from 120,000 ppm dry to an average of 44 ppm dry or {approx}15ppm wet, which easily passes the 250 ppm wet criterion. Per guidance from HB Line Engineering, SRNL blended Batch 80302 resin with Batch P9059 resin which had been treated previously by ResinTech to remove chloride. The chloride concentrations for the two drums of Batch P9059 were 248 ppm dry ({approx}83 ppm wet) {+-}22.8% and 583 ppm dry ({approx}194 ppm wet) {+-} 11.8%. The blended resin was packaged in five gallon buckets

    Evidence-based Medication knowledge Brokers in Residential Aged CarE (EMBRACE) : protocol for a helix-counterbalanced randomised controlled trial

    Get PDF
    Introduction: Clinical practice guidelines recommend against the routine use of psychotropic medications in residential aged care facilities (RACFs). Knowledge brokers are individuals or groups who facilitate the transfer of knowledge into practice. The objective of this trial is to evaluate the effectiveness and cost-effectiveness of using knowledge brokers to translate Australia’s new Clinical Practice Guidelines for the Appropriate Use of Psychotropic Medications in People Living with Dementia and in Residential Aged Care. Methods and analysis: The Evidence-based Medication knowledge Brokers in Residential Aged CarE (EMBRACE) trial is a helix-counterbalanced randomised controlled trial. The 12-month trial will be conducted in up to 19 RACFs operated by four Australian aged care provider organisations in Victoria, New South Wales, Western Australia and Queensland. RACFs will be randomised to receive three levels of implementation strategies (knowledge broker service, pharmacist-led quality use of medications education activities and distribution of the Guidelines and supporting materials) across three medication contexts (antipsychotics, benzodiazepines and antidepressants). Implementation strategies will be delivered by an embedded on-site aged care pharmacist working at a system level across each participating RACF. All RACFs will receive all implementation strategies simultaneously but for different medication contexts. The primary outcome will be a composite dichotomous measure of 6-month RACF-level concordance with Guideline recommendations and good practice statements among people using antipsychotics, benzodiazepines and antidepressants for changed behaviours. Secondary outcomes will include proportion of residents with Guideline concordant use of antipsychotics, benzodiazepines and antidepressants measured at the RACF-level and proportion of residents with psychotropic medication use, hospitalisation, falls, falls with injury, polypharmacy, quality of life, activities of daily living, medication incidents and behavioural incidents measured at the RACF-level. Discussion: The EMBRACE trial investigates a novel guideline implementation strategy to improve the safe and effective use of psychotropic medications in RACFs. We anticipate that the findings will provide new information on the potential role of knowledge brokers for successful and cost-effective guideline implementation
    • …
    corecore