1,284 research outputs found
State-of-the art of acousto-optic sensing and imaging of turbid media
Acousto-optic (AO) is an emerging hybrid technique for measuring optical contrast in turbid media using coherent light and ultrasound (US). A turbid object is illuminated with a coherent light source leading to speckle formation in the remitted light. With the use of US, a small volume is selected,which is commonly referred to as the “tagging” volume. This volume acts as a source of modulated light, where modulation might involve phase and intensity change. The tagging volume is created by focusing ultrasound for good lateral resolution; the axial resolution is accomplished by making either the US frequency, amplitude, or phase time-dependent. Typical resolutions are in the order of 1 mm. We will concentrate on the progress in the field since 2003. Different schemes will be discussed to detect the modulated photons based on speckle detection, heterodyne detection, photorefractive crystal (PRC) assisted detection, and spectral hole burning (SHB) as well as Fabry-Perot interferometers. The SHB and Fabry-Perot interferometer techniques are insensitive to speckle decorrelation and therefore suitable for in vivo imaging. However, heterodyne and PRC methods also have potential for in vivo measurements. Besides measuring optical properties such as scattering and absorption, AO can be applied in fluorescence and elastography applications
Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns
Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical phase modulation, the fraction of light that is tagged by ultrasound, speckle contrast, mean square difference of speckle patterns and the contrast of the summation of speckle patterns acquired at different ultrasound phases. We derive the important relations from basic assumptions and definitions, and then validate them with simulations. For ultrasound-generated phase modulation angles below 0.7 rad (assuming uniform modulation), we are now able to relate speckle pattern statistics to the acousto-optic phase modulation. Hence our theory allows quantifying speckle observations in terms of ultrasonically tagged fractions of light for near-unity-contrast speckle pattern
Handheld probe for ultrasound/photoacoustic dual modality imaging
In this article we present a recently developed portable imaging system designed for point of care diagnostics. The system provides two imaging modalities: the well known ultrasound technique which provides anatomical and structural information and the newly emerging technique called photoacoustics which provides vascular bed and functional information, all in a portable and cost-effective scanne
Solving the speckle decorrelation challenge in acousto-optic sensing using tandem nanosecond pulses within the ultrasound period
We present a novel acousto-optic (AO) method, based on a nanosecond laser system, which will enable us to obtain AO signals in liquid turbid media. By diverting part of the light in a delay line, we inject tandem pulses with 27 ns separation. The change of the speckle pattern, caused by the ultrasound phase shift, reduces the speckle contrast of the integrated speckle pattern captured in a single camera frame. With these tandem pulses, we were able to perform AO on a 2 cm liquid turbid medium in transmission mode. We show the raw signal and a spatial AO scan of a homogenous water-intralipid sample. This approach is potentially capable of AO probing in vivo, since the acquisition time (of approximately 40 ns) is four orders of magnitude less than the typical time scales of speckle decorrelation found in vivo. The method may eventually enable us to obtain fluence compensated photoacoustic signals generated by the same lase
Towards acousto-optic tissue imaging with nanosecond laser pulses
We present a way to generate acousto-optical signals in timovssue-like media with nanosecond laser pulses. Our method is based on recording and analyzing speckle patterns formed by interaction of nanosecond laser pulses with tissue, without and with simultaneous application of ultrasound. Stroboscopic application allows visualizing the temporal behavior of speckles while the ultrasound is propagating through the medium. We investigate two ways of quantifying the acousto-optic effect, viz. adding and subtracting speckle patterns obtained at various ultrasound phases. Both methods are compared with the existing speckle contrast method using a 2D scan and are found to perform similarly. Our method gives outlook on overcoming the speckle decorrelation problem in acousto-optics, and therefore brings in-vivo acousto-optic measurements one step closer. Furthermore it enables combining acousto-optics and photoacoustics in one setup with a single laser
- …