5,571 research outputs found

    Ribosome collisions and Translation efficiency: Optimization by codon usage and mRNA destabilization

    Full text link
    Individual mRNAs are translated by multiple ribosomes that initiate translation with a few seconds interval. The ribosome speed is codon dependant, and ribosome queuing has been suggested to explain specific data for translation of some mRNAs in vivo. By modelling the stochastic translation process as a traffic problem, we here analyze conditions and consequences of collisions and queuing. The model allowed us to determine the on-rate (0.8 to 1.1 initiations per sec) and the time (1 sec) the preceding ribosome occludes initiation for Escherichia coli lacZ mRNA in vivo. We find that ribosome collisions and queues are inevitable consequences of a stochastic translation mechanism that reduce the translation efficiency substantially on natural mRNAs. The cells minimize collisions by having its mRNAs being unstable and by a highly selected codon usage in the start of the mRNA. The cost of mRNA breakdown is offset by the concomitant increase in translational efficiency.Comment: 5 figures, 3 table

    Modelling of Transport Project Uncertainties: Feasibility Risk Assessment and Scenario Analysis

    Get PDF
    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating investment costs, with a quantitative risk analysis based on Monte Carlo simulation and to make use of a set of exploratory scenarios. The analysis is carried out by using the CBA-DK model representing the Danish standard approach to socio-economic cost-benefit analysis. Specifically, the paper proposes to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenariogrid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk

    Abstract Interpretation of PIC programs through Logic Programming

    Get PDF

    A Web-based Tool Combining Different Type Analyses

    Get PDF
    Abstract. There are various kinds of type analysis of logic programs. These in-clude for example inference of types that describe an over-approximation of the success set of a program, inference of well-typings, and abstractions based on given types. Analyses can be descriptive or prescriptive or a mixture of both, and they can be goal-dependent or goal-independent. We describe a prototype tool that can be accessed from a web browser, allowing various type analyses to be run. The first goal of the tool is to allow the analysis results to be examined conveniently by clicking on points in the original program clauses, and to highlight ill-typed pro-gram constructs, empty types or other type anomalies. Secondly the tool allows combination of the various styles of analysis. For example, a descriptive regular type can be automatically inferred for a given program, and then that type can be used to generate the minimal “domain model ” of the program with respect to the corresponding pre-interpretation, which can give more precise information than the original descriptive type.

    Effect of laser-welding parameters on the heat input and weld-bead profile

    Get PDF
    Laser butt-welding of medium carbon steel was investigated using CW 1.5 kW CO2 laser. The effect of laser power (1.2 - 1.43 kW), welding speed (30 - 70 cm/min) and focal point position (-2.5 - 0 mm) on the heat input and the weld-bead geometry (i.e. penetration (P), welded zone width (W) and heat affected zone width (WHAZ)) was investigated using Response Surface Methodology (RSM). The experimental plan was based on Box-Behnken design. Linear and quadratic polynomial equations for predicting the heat input and the weld-bead geometry were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. It is suggested that regression equations can be used to find optimum welding conditions for the desired criteria
    • …
    corecore