8,917 research outputs found

    Consequences of Leading-Logarithm Summation for the Radiative Breakdown of Standard-Model Electroweak Symmetry

    Full text link
    In the empirically sensible limit in which QCD, t-quark Yukawa, and scalar-field-interaction coupling constants dominate all other Standard-Model coupling constants, we sum all leading-logarithm terms within the perturbative expansion for the effective potential that contribute to the extraction of the Higgs boson mass via radiative electroweak symmetry breaking. A Higgs boson mass of 216 GeV emerges from such terms, as well as a scalar-field-interaction coupling constant substantially larger than that anticipated from conventional spontaneous symmetry breaking. The sum of the effective potential's leading logarithms is shown to exhibit a local minimum in the limit ϕ→0\phi \to 0 if the QCD coupling constant is sufficiently strong, suggesting (in a multiphase scenario) that electroweak physics may provide the mechanism for choosing the asymptotically-free phase of QCD.Comment: latex using aip proceedings class. 8 page write-out of presentation at MRST 2003 Conference (Syracuse

    Higher Order Stability of a Radiatively Induced 220 GeV Higgs Mass

    Full text link
    The effective potential for radiatively broken electroweak symmetry in the single Higgs doublet Standard Model is explored to four sequentially subleading logarithm-summation levels (5-loops) in the dominant Higgs self-interaction couplant λ\lambda. We augment these results with all contributing leading logarithms in the remaining large but sub-dominant Standard Model couplants (t-quark, QCD and SU(2)⊗U(1)SU(2)\otimes U(1) gauge couplants) as well as next to leading logarithm contributions from the largest of these, the t-quark and QCD couplants. Order-by-order stability is demonstrated for earlier leading logarithm predictions of an order 220 GeV Higgs boson mass in conjunction with fivefold enhancement of the value for λ\lambda over that anticipated from conventional spontaneous symmetry breaking.Comment: revtex, 6 pages. Analysis and text is expanded in revised versio

    On the Standard Approach to Renormalization Group Improvement

    Full text link
    Two approaches to renormalization-group improvement are examined: the substitution of the solutions of running couplings, masses and fields into perturbatively computed quantities is compared with the systematic sum of all the leading log (LL), next-to-leading log (NLL) etc. contributions to radiatively corrected processes, with n-loop expressions for the running quantities being responsible for summing N^{n}LL contributions. A detailed comparison of these procedures is made in the context of the effective potential V in the 4-dimensional O(4) massless λϕ4\lambda \phi^{4} model, showing the distinction between these procedures at two-loop order when considering the NLL contributions to the effective potential V.Comment: 6 page

    Radiative Electroweak Symmetry-Breaking Revisited

    Full text link
    In the absence of a tree-level scalar-field mass, renormalization-group methods permit the explicit summation of leading-logarithm contributions to all orders of the perturbative series within the effective potential for SU(2)×U(1)SU(2)\times U(1) electroweak symmetry. This improvement of the effective potential function is seen to reduce residual dependence on the renormalization mass scale. The all-orders summation of leading logarithm terms involving the dominant three couplings contributing to radiative corrections is suggestive of a potential characterized by a plausible Higgs boson mass of 216 GeV. However, the tree potential's local minimum at ϕ=0\phi =0 is restored if QCD is sufficiently strong.Comment: revtex, 4 pages, 1 eps figure embedded in manuscript. Updated version contains additional comments and corrects minor error

    Mass Predictions for Pseudoscalar JPC=0−+J^{PC}=0^{-+} Charmonium and Bottomonium Hybrids in QCD Sum-Rules

    Full text link
    Masses of the pseudoscalar (JPC=0−+)(J^{PC}=0^{-+}) charmonium and bottomonium hybrids are determined using QCD Laplace sum-rules. The effects of the dimension-six gluon condensate are included in our analysis and result in a stable sum-rule analysis, whereas previous studies of these states were unable to optimize mass predictions. The pseudoscalar charmonium hybrid is predicted to have a mass of approximately 3.8 GeV and the corresponding bottomonium prediction is 10.6 GeV. Calculating the full correlation function, rather than only the imaginary part, is shown to be necessary for accurate formulation of the sum-rules. The charmonium hybrid mass prediction is discussed within the context of the X Y Z resonances.Comment: 10 pages, 7 embedded figures. Analysis extended and refined in v
    • …
    corecore