30 research outputs found
Impact of Dose De-Escalation and Escalation on Daptomycin’s Pharmacodynamics against Clinical Methicillin-Resistant Staphylococcus aureus Isolates in an In Vitro Model
De-escalation and escalation therapeutic strategies are commonly employed by clinicians on the basis of susceptibility results and patient response. Since no in vitro or in vivo data are currently available to support one strategy over the other for daptomycin, we attempted to evaluate the effects of dose escalation and de-escalation on daptomycin activity against methicillin-resistant Staphylococcus aureus (MRSA) isolates using an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model with simulated endocardial vegetations. Three clinical MRSA isolates, including one heterogeneous vancomycin-intermediate S. aureus (hVISA) isolate and one vancomycin-intermediate S. aureus (VISA) isolate, were exposed to daptomycin at 10 or 6 mg/kg of body weight/day for 8 days using a starting inoculum of 109 CFU/g of vegetations, with dose escalation and de-escalation initiated on the fourth day. Daptomycin MIC values ranged from 0.5 to 1 g/ml. In the PK/PD model, high-dose daptomycin (10 mg/kg/day) and de-escalation simulation (10 to 6 mg/kg/day) appeared to be the most efficient regimens against the three tested isolates, exhibiting the fastest bactericidal activity (4 to 8 h) compared to that of the standard regimen of 6 mg/kg/day and the escalation therapy of 6 to 10 mg/kg/day. The differences in the numbers of CFU/g observed between dose escalation and de-escalation were significant for the hVISA strain, with the de-escalation simulation exhibiting a better killing effect than the escalation simulation (P < 0.024). Although our results need to be carefully considered, the use of high-dose daptomycin up front demonstrated the most efficient activity against the tested isolates. Different therapeutic scenarios including isolates with higher MICs and prolonged drug exposures are warranted to better understand the outcomes of escalation and de-escalation strategies.We thank Debbie Goff and Preeti Pancholi from the Ohio State
Medical Center for kindly providing isolate B010-01. This study was funded by a research grant from Cubist Pharmaceuticals. M.J.R. has received grant support, has served as a consultant, or has participated as a speaker for Astellas, Cerexa, Cubist, Forest, Johnson & Johnson, Pfizer, Targanta and Theravance. C.V. and M.E.S. have no potential conflicts to declare
Evaluation of Telavancin Activity versus Daptomycin and Vancomycin against Daptomycin-Nonsusceptible Staphylococcus aureus in an In Vitro Pharmacokinetic/Pharmacodynamic Model
Daptomycin-nonsusceptible (DNS) Staphylococcus aureus strains have been reported over the last several years. Telavancin is a lipoglycopeptide with a dual mechanism of action, as it inhibits peptidoglycan polymerization/cross-linking and disrupts the membrane potential. Three clinical DNS S. aureus strains, CB1814, R6212, and SA-684, were evaluated in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model with simulated endocardial vegetations (starting inoculum, 108.5 CFU/g) for 120 h. Simulated regimens included telavancin at 10 mg/kg every 24 h (q24h; peak, 87.5 mg/liter; t1/2, 7.5 h), daptomycin at 6 mg/kg q24h (peak, 95.7 mg/liter; t1/2, 8 h), and vancomycin at 1 g q12h (peak, 30 mg/liter; t1/2, 6 h). Differences in CFU/g between regimens at 24 through 120 h were evaluated by analysis of variance with a Tukey's post hoc test. Bactericidal activity was defined as a ≥3-log10 CFU/g decrease in colony count from the initial inoculum. MIC values were 1, 0.25, and 0.5 mg/liter (telavancin), 4, 2, and 2 mg/liter (daptomycin), and 2, 2, and 2 mg/liter (vancomycin) for CB1814, R6212, and SA-684, respectively. Telavancin displayed bactericidal activities against R6212 (32 to 120 h; −4.31 log10 CFU/g), SA-684 (56 to 120 h; −3.06 log10 CFU/g), and CB1814 (48 to 120 h; −4.9 log10 CFU/g). Daptomycin displayed initial bactericidal activity followed by regrowth with all three strains. Vancomycin did not exhibit sustained bactericidal activity against any strain. At 120 h, telavancin was significantly better at reducing colony counts than vancomycin against all three tested strains and better than daptomycin against CB1814 (P < 0.05). Telavancin displayed bactericidal activity in vitro against DNS S. aureus isolates.This study was funded by a research grant from Astellas, Deerfield, IL. M.J.R. has received grant support, has served as a consultant, or has participated as a speaker for Astellas, Cerexa, Cubist, Forest, Pfizer, and Theravance. C.V. and M.E.S. have no conflicts to declare
Novel Daptomycin Combinations against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus in an In Vitro Model of Simulated Endocardial Vegetations
Reduced susceptibility to daptomycin has been reported in patients with infections due to methicillin-resistant Staphylococcus aureus (MRSA). Although infections with daptomycin-nonsusceptible (DNS) MRSA are infrequent, optimal therapy of these strains has not been determined. We investigated the killing effects of novel antibiotic combinations with daptomycin (DAP) against two clinical DNS MRSA isolates (SA-684 and R6003) in a 72-h in vitro pharmacokinetic/pharmacodynamic (PK/PD) model with simulated endocardial vegetations (SEV). Simulated regimens included DAP at 6 mg/kg every 24 h (q24h) alone or in combination with trimethoprim-sulfamethoxazole (TMP/SMX) at 160/800 mg q12h, linezolid (LIN) at 600 mg q12h, cefepime (CEF) at 2 g q12h, and nafcillin (NAF) at 4 g q4h. Bactericidal activity was defined as a ≥3-log10 CFU/g kill. Differences in CFU/g were evaluated between 4 and 72 h by analysis of variance with the Bonferroni post hoc test. DAP MICs were 4 and 2 mg/liter for SA-684 and R6003, respectively. In the PK/PD model, DAP alone was slowly bactericidal, achieving a 3-log10 kill at 24 and 50 h for SA-684 and R6003, respectively. Against SA-684, DAP plus TMP/SMX, CEF, LIN, or NAF was bactericidal at 4, 4, 8, and 8 h, respectively, and maintained this activity for the 72-h study duration. DAP plus TMP/SMX or CEF exhibited superior killing than DAP alone against SA-684 between 4 and 72 h, and overall this was significant (P < 0.05). Against R6003, DAP plus TMP/SMX was bactericidal (8 h) and superior to DAP alone between 8 and 72 h (P < 0.001). The unique combination of DAP plus TMP/SMX was the most effective and rapidly bactericidal regimen against the two isolates tested and may provide a clinical option to treat DNS S. aureus infections.This work was not funded by any external support.
M.J.R. has received grant support, consulted for, or provided lectures for Astellas, Cubist, Forrest, Ortho-McNeil, and Pfizer
Evaluation of the Novel Combination of High-Dose Daptomycin plus Trimethoprim-Sulfamethoxazole against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Using an In Vitro Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations
Daptomycin-nonsusceptible (DNS) Staphylococcus aureus is found in difficult-to-treat infections, and the optimal therapy is unknown. We investigated the activity of high-dose (HD) daptomycin plus trimethoprim-sulfamethoxazole de-escalated to HD daptomycin or trimethoprim-sulfamethoxazole against 4 clinical DNS methicillin-resistant S. aureus (MRSA) isolates in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations (109 CFU/g). Simulated regimens included HD daptomycin at 10 mg/kg/day for 14 days, trimethoprim-sulfamethoxazole at 160/800 mg every 12 h for 14 days, HD daptomycin plus trimethoprim-sulfamethoxazole for 14 days, and the combination for 7 days de-escalated to HD daptomycin for 7 days and de-escalated to trimethoprim-sulfamethoxazole for 7 days. Differences in CFU/g (at 168 and 336 h) were evaluated by analysis of variance (ANOVA) with a Tukey's post hoc test. Daptomycin MICs were 4 μg/ml (SA H9749-1, vancomycin-intermediate Staphylococcus aureus; R6212, heteroresistant vancomycin-intermediate Staphylococcus aureus) and 2 μg/ml (R5599 and R5563). Trimethoprim-sulfamethoxazole MICs were ≤0.06/1.19 μg/ml. HD daptomycin plus trimethoprim-sulfamethoxazole displayed rapid bactericidal activity against SA H9749-1 (at 7 h) and R6212 (at 6 h) and bactericidal activity against R5599 (at 72 h) and R5563 (at 36 h). A ≥8 log10 CFU/g decrease was observed with HD daptomycin plus trimethoprim-sulfamethoxazole against all strains (at 48 to 144 h), which was maintained with de-escalation to HD daptomycin or trimethoprim-sulfamethoxazole at 336 h. The combination for 14 days and the combination for 7 days de-escalated to HD daptomycin or trimethoprim-sulfamethoxazole was significantly better than daptomycin monotherapy (P < 0.05) and trimethoprim-sulfamethoxazole monotherapy (P < 0.05) at 168 and 336 h. Combination therapy followed by de-escalation offers a novel bactericidal therapeutic alternative for high-inoculum, serious DNS MRSA infections.We are grateful to St. Joseph’s Hospital Center, Syracuse, NY, for SA H9749-1 and to Albany Medical Center for R5599.
This work was funded by an investigator-initiated grant from Cubist Pharmaceuticals.
M.J.R. has received grant support, consulted for, or provided lectures for Astellas, Cubist, Forest, Clinical Therapeutics, and Rib-X and is supported in part by grant R21AI092055 for the NIAID
Effect of Continuous and Sequential Therapy among Veterans Receiving Daptomycin or Linezolid for Vancomycin-Resistant Enterococcus faecium Bacteremia
Vancomycin-resistant Enterococcus faecium bloodstream infections (VREF-BSI) cause significant mortality, highlighting the need to optimize their treatment. We compared the effectiveness and safety of daptomycin (DAP) and linezolid (LZD) as continuous or sequential therapy for VREF-BSI in a national, retrospective, propensity score (PS)-matched cohort study of hospitalized Veterans Affairs patients (2004 to 2014). We compared clinical outcomes and adverse events among patients treated with continuous LZD, continuous DAP, or sequential LZD followed by DAP (LZD-to-DAP). Secondarily, we analyzed the impact of infectious diseases (ID) consultation and source of VREF-BSI. A total of 2,630 patients were included in the effectiveness analysis (LZD [n = 1,348], DAP [n = 1,055], LZD-to-DAP [n = 227]). LZD was associated with increased 30-day mortality versus DAP (risk ratio [RR], 1.11; 95% confidence interval [CI], 1.01 to 1.22; P = 0.042). After PS matching, this relationship persisted (RR, 1.13; 95% CI, 1.02 to 1.26; P = 0.015). LZD-to-DAP switchers had lower mortality than those remaining on LZD (RR, 1.29; 95% CI, 1.03 to 1.63; P = 0.021), suggesting a benefit may still be derived with sequential therapy. LZD-treated patients experienced more adverse events, including a ≥50% reduction in platelets (RR, 1.07; 95% CI, 1.03 to 1.11; P = 0.001). DAP was associated with lower mortality than was LZD in patients with endocarditis (RR, 1.20; 95% CI, 1.02 to 1.41; P = 0.024); however, there was no statistically significant association between treatment group and mortality with regard to other sources of infection. Therefore, source of infection appears to be important in selection of patients most likely to benefit from DAP over LZD
Vancomycin 24-Hour Area under the Curve/Minimum Bactericidal Concentration Ratio as a Novel Predictor of Mortality in Methicillin-Resistant Staphylococcus aureus Bacteremia
While previous studies have examined the association between vancomycin (VAN) exposure and MIC with regard to outcomes in methicillin-resistant Staphylococcus aureus bacteremia (MRSA-B), none have explored if a relationship exists with the VAN minimum bactericidal concentration (MBC). The objective of this study was to evaluate the VAN 24-h area under the curve (AUC24)/MBC ratio as a pharmacodynamic predictor of mortality. This retrospective cohort study included patients treated with VAN for MRSA-B with the primary outcome of 30-day all-cause mortality. Data collected included patient demographics, comorbidities, antimicrobial treatment data, therapeutic drug levels, and laboratory and microbiological data. Vancomycin MICs and MBCs were determined by Etest (MIC only) and broth microdilution (BMD). The vancomycin AUC24 was determined by pharmacokinetic maximum a posteriori probability Bayesian (MAP-Bayesian) analysis. The most significant breakpoint for 30-day mortality was determined by classification and regression tree (CART) analysis. The association between pharmacodynamic parameters (VAN AUC24/MICBMD, VAN AUC24/MICEtest, and AUC24/MBCBMD) and mortality were determined by χ2 and multivariable Poisson regression. Overall mortality in this cohort (n = 53) was 20.8% (n = 11/53), and all corresponding MRSA blood isolates were VAN susceptible (MIC range, 0.5 to 2 μg/ml; MIC50, 1 μg/ml; MIC90, 1 μg/ml). The CART-derived breakpoints for mortality were 176 (VAN AUC24/MBC) and 334 (VAN AUC24/MICBMD). In multivariable analysis, the association between a VAN AUC24/MBC of ≥176 and survival persisted, but VAN AUC24/MICBMD values (≥334 or ≥400) were not associated with improved mortality. In conclusion, VAN AUC24/MBC was a more important predictor of 30-day mortality than VAN AUC24/MIC for MRSA-B
Evaluation of Ceftaroline Activity versus Ceftriaxone against Clinical Isolates of Streptococcus pneumoniae with Various Susceptibilities to Cephalosporins in an In Vitro Pharmacokinetic/Pharmacodynamic Model
Drug resistance in Streptococcus pneumoniae, a frequent pathogen in community-acquired pneumonia, is increasing. Ceftaroline (active metabolite of ceftaroline fosamil) is a broad-spectrum intravenous cephalosporin with activity in vitro against drug-resistant Gram-positive organisms. We investigated ceftaroline at 600 mg every 12 h (q12h) (maximum concentration of the free, unbound drug in serum [fCmax] is 15.2 μg/ml, and half-life [T1/2] is 2.5 h) versus ceftriaxone at 1 g q24h (fCmax = 23 μg/ml, T1/2 = 8 h) against six clinical S. pneumoniae isolates in a one-compartment in vitro pharmacokinetic/pharmacodynamic 96-h model (starting inoculum of 107 CFU/ml). Differences in CFU/ml (at 24 to 96 h) were evaluated by analysis of variance with a Tukey's post hoc test. Bactericidal activity was defined as a ≥3 log10 CFU/ml decrease from the initial inoculum. Ceftaroline MICs were 0.06, 0.015, ≤0.008, 0.25, 0.25, and 0.5 μg/ml, and ceftriaxone MICs were 0.5, 0.25, 0.25, 4, 4, and 8 μg/ml for SP 1477, SP 669, SP 132, SP 211, SP 90, and SP 1466, respectively. Against the ceftaroline- and ceftriaxone-susceptible strain SP 1477, ceftaroline displayed sustained bactericidal activity (3 to 96 h, −5.49 log10 CFU/ml) and was significantly (P ≤ 0.012) better than ceftriaxone (72 to 96 h, −2.03 log10 CFU/ml). Against the ceftriaxone-resistant strains, ceftaroline displayed sustained bactericidal activity at 96 h and was significantly better than ceftriaxone (SP211 [−5.91 log10 CFU/ml, P ≤ 0.002], SP 90 [−5.26 log10 CFU/ml, P ≤ 0.008], and SP1466 [−5.14 log10 CFU/ml, P ≤ 0.042]). Ceftaroline was the more effective drug and displayed sustained bactericidal activity. Ceftaroline fosamil may provide a therapeutic option to treat ceftriaxone-resistant S. pneumoniae infections.This study was funded by a research grant from Forest Laboratories. Scientific Therapeutics Information, Inc. (Springfield, NJ), provided editorial assistance on the manuscript. Funding for editorial assistance was provided by Forest Laboratories, Inc.
M.J.R. has received research support from or consulted or participated in speaking for Astellas, Cubist, Forest Laboratories, Pfizer, Rib-X, and Novartis. D.B. is an employee of Cerexa, a wholly owned subsidiary of Forest Laboratories, Inc., and holds stock and stock options in Forest Laboratories, Inc. M.E.S., C.V., and P.W. declare no conflicts of interest
Evaluation of Ceftaroline Activity against Heteroresistant Vancomycin-Intermediate Staphylococcus aureus and Vancomycin-Intermediate Methicillin-Resistant S. aureus Strains in an In Vitro Pharmacokinetic/Pharmacodynamic Model: Exploring the “Seesaw Effect”
A “seesaw effect” in methicillin-resistant Staphylococcus aureus (MRSA) has been demonstrated, whereby susceptibility to β-lactam antimicrobials increases as glyco- and lipopeptide susceptibility decreases. We investigated this effect by evaluating the activity of the anti-MRSA cephalosporin ceftaroline against isogenic pairs of MRSA strains with various susceptibilities to vancomycin in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model. The activities of ceftaroline at 600 mg every 12 h (q12h) (targeted free maximum concentration of drug in serum [fCmax], 15.2 μg/ml; half-life [t1/2], 2.3 h) and vancomycin at 1 g q12h (targeted fCmax, 18 μg/ml; t1/2, 6 h) were evaluated against 3 pairs of isogenic clinical strains of MRSA that developed increased MICs to vancomycin in patients while on therapy using a two-compartment hollow-fiber PK/PD model with a starting inoculum of ∼107 CFU/ml over a 96-h period. Bacterial killing and development of resistance were evaluated. Expression of penicillin-binding proteins (PBPs) 2 and 4 was evaluated by reverse transcription (RT)-PCR. The achieved pharmacokinetic parameters were 98 to 119% of the targeted values. Ceftaroline and vancomycin were bactericidal against 5/6 and 1/6 strains, respectively, at 96 h. Ceftaroline was more active against the mutant strains than the parent strains, with this difference being statistically significant for 2/3 strain pairs at 96 h. The level of PBP2 expression was 4.4× higher in the vancomycin-intermediate S. aureus (VISA) strain in 1/3 pairs. The levels of PBP2 and PBP4 expression were otherwise similar between the parent and mutant strains. These data support the seesaw hypothesis that ceftaroline, like traditional β-lactams, is more active against strains that are less susceptible to vancomycin even when the ceftaroline MICs are identical. Further research to explore these unique findings is warranted.This work was funded by an investigator-initiated grant from Forest Laboratories. M.J.R. is funded in part by NIH R21A1092055-01.
We thank Abbott Laboratories for the use of the fluorescence polarization immunoassay analyzer for determination of vancomycin concentrations.
We also thank Alexander Tomasz (The Rockefeller University, New York, NY) for providing strains JH-1 and JH-9. M.J.R. has received grant support, consulted for, or provided lectures for Astellas, Cubist, Forest, Pfizer, Novartis, and Rib-X. B.J.W., M.E.S., and G.W.K. have no potential conflicts of interest to declare
Daptomycin-Nonsusceptible Vancomycin-Intermediate Staphylococcus aureus Vertebral Osteomyelitis Cases Complicated by Bacteremia Treated with High-Dose Daptomycin and Trimethoprim-Sulfamethoxazole
We report two cases of daptomycin (DAP)-nonsusceptible (DNS) vancomycin-intermediate Staphylococcus aureus (VISA) vertebral osteomyelitis cases complicated by bacteremia treated with high-dose daptomycin and trimethoprim-sulfamethoxazole. Both patients responded rapidly and favorably to this combination. The clinical isolates from the two patients were tested post hoc in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model to confirm the bactericidal activity and enhancement of daptomycin and trimethoprim-sulfamethoxazole. The combination of high-dose daptomycin and trimethoprim-sulfamethoxazole should be explored further for the treatment of DNS VISA strains.M.J.R. has received grant support, consulted for, or provided lectures for Astellas, Cubist, Forest, Clinical Therapeutics, Theravance, and Rib- X. L.M.A has served as an advisory board member (Forest) and provided lectures (Astellas) and owns stock (Merck). M.E.S., A.E.W., and M.H. have no potential conflicts of interest