78 research outputs found
On the power spectrum of undulations of simulated bilayers
The best finite Fourier Series for a smooth surface closest to the
positions of heads of amphiphiles in the least-square sense, agrees fully with
the Fourier coefficients obtained by a direct summation over raw data points.
Both metods produce structure factors containing all necessary features:
small-q divergence, a minimum, the raise to the ubiquitous nearest neighbor
peak near (coll.diameter) and further peaks. The Laurent series is
also discussed.Comment: submitted as Letter+Suppl.Material to J.Chem.Phy
Extended Capillary Waves and the Negative Rigidity Coefficient in the d=2 SOS model
The solid-on-solid (SOS) model of an interface separating two phases is
exactly soluble in two dimensions (d=2) when the interface becomes a
one-dimensional string. The exact solution in terms of the transfer matrix is
recalled and the density-density correlation function
together with its projections, is computed. It is demonstrated that the shape
fluctuations follow the (extended) capillary-wave theory expression
for sufficiently small wave vectors .
We find {\it negative}, . At there is a strong
nearest-neighbor peak. Both these results confirm the earlier findings as
established in simulations in d=3 and in continuous space, but now in an
exactly soluble lattice model.Comment: file.tex plus 4 (four) figures in Postscrip
Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids
We have carried out extensive equilibrium molecular dynamics (MD) simulations
to investigate the Liquid-Vapor coexistence in partially miscible binary and
ternary mixtures of Lennard-Jones (LJ) fluids. We have studied in detail the
time evolution of the density profiles and the interfacial properties in a
temperature region of the phase diagram where the condensed phase is demixed.
The composition of the mixtures are fixed, 50% for the binary mixture and
33.33% for the ternary mixture. The results of the simulations clearly indicate
that in the range of temperatures K, --in the scale of
argon-- the system evolves towards a metastable alternated liquid-liquid
lamellar state in coexistence with its vapor phase. These states can be
achieved if the initial configuration is fully disordered, that is, when the
particles of the fluids are randomly placed on the sites of an FCC crystal or
the system is completely mixed. As temperature decreases these states become
very well defined and more stables in time. We find that below K,
the alternated liquid-liquid lamellar state remains alive for 80 ns, in the
scale of argon, the longest simulation we have carried out. Nonetheless, we
believe that in this temperature region these states will be alive for even
much longer times.Comment: 18 Latex-RevTex pages including 12 encapsulated postscript figures.
Figures with better resolution available upon request. Accepted for
publication in Phys. Rev. E Dec. 1st issu
Molecular Dynamics Study of the Nematic-Isotropic Interface
We present large-scale molecular dynamics simulations of a nematic-isotropic
interface in a system of repulsive ellipsoidal molecules, focusing in
particular on the capillary wave fluctuations of the interfacial position. The
interface anchors the nematic phase in a planar way, i.e., the director aligns
parallel to the interface. Capillary waves in the direction parallel and
perpendicular to the director are considered separately. We find that the
spectrum is anisotropic, the amplitudes of capillary waves being larger in the
direction perpendicular to the director. In the long wavelength limit, however,
the spectrum becomes isotropic and compares well with the predictions of a
simple capillary wave theory.Comment: to appear in Phys. Rev.
Elastic constants of nematic liquid crystals of uniaxial symmetry
We study in detail the influence of molecular interactions on the Frank
elastic constants of uniaxial nematic liquid crystals composed of molecules of
cylindrical symmetry. A brief summary of the status of theoretical development
for the elastic constants of nematics is presented. Considering a pair
potential having both repulsive and attractive parts numerical calculations are
reported for three systems MBBA, PAA and 8OCB. For these systems the
length-to-width ratio is estimated from the experimentally proposed
structure of the molecules. The repulsive interaction is represented by a
repulsion between hard ellipsoids of revolution (HER) and the attractive
potential is represented by the quadrupole and dispersion interactions. From
the numerical results we observe that in the density range of nematics the
contribution of the quadrupole and dispersion interactions are small as
compared to the repulsive HER interaction. The inclusion of attractive
interaction reduces the values of elastic constants ratios. The temperature
variation of elastic constants ratios are reported and compared with the
experimental values. A reasonably good agreement between theory and experiment
is observed
- …