9 research outputs found

    Fatigue safety of riveted bridges - Part 2: Verification based on the monitoring data of the project "Railway Bridge at Eglisau"

    Get PDF
    Fatigue safety of riveted bridges Part 2: Verification based on the monitoring data of the project "Railway Bridge at Eglisau". Long term monitoring over one year has been conducted on the riveted Railway Bridge over the Rhine at Eglisau. Measured values were exploited by rainflow analysis and served as the basis for the verification of fatigue safety. As the locations of measurements are generally not identical with the cross sections of verification, measured strains respectively stresses, were extrapolated to the relevant verification cross section by means of factors that were obtained by structural analysis. Using these values, all fatigue relevant structural details were first verified with respect to the fatigue limit. Then, damage accumulation calculation according to the Palmgren-Miner rule and based on Wohler curves for riveted details was performed for those structural details where the fatigue limit check was not fulfilled. Sufficient fatigue safety could finally be verified for the whole riveted structure and an additional service life of at least 50 years for the most fatigue relevant structural element

    Fatigue safety examination of a riveted railway bridge using data from long term monitoring

    Get PDF
    Long term monitoring of structural elements of a 115 years old riveted railway bridge structure of high value as cultural heritage has been conducted. Monitored values were exploited by Rainflow analysis and served as the basis for the fatigue safety verification. As the locations of measurements are generally not identical with the cross sections of verification, measured strains were translated to the relevant verification cross section by means of factors that were determined by structural analysis. Using these values, all fatigue relevant structural details were first verified with respect to the fatigue limit. Then, damage accumulation calculation according to the Palmgren-Miner Rule was performed for those elements where the fatigue limit check was not fulfilled. Sufficient fatigue safety could finally be verified for the entire riveted structure and additional service duration of at least 50 years for this riveted structure could be validated

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text
    The structure of the CMS inner tracking system has been studied using nuclear interactions of hadrons striking its material. Data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded in 2015 at the LHC are used to reconstruct millions of secondary vertices from these nuclear interactions. Precise positions of the beam pipe and the inner tracking system elements, such as the pixel detector support tube, and barrel pixel detector inner shield and support rails, are determined using these vertices. These measurements are important for detector simulations, detector upgrades, and to identify any changes in the positions of inactive elements

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text
    The structure of the CMS inner tracking system has been studied using nuclear interactions of hadrons striking its material. Data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded in 2015 at the LHC are used to reconstruct millions of secondary vertices from these nuclear interactions. Precise positions of the beam pipe and the inner tracking system elements, such as the pixel detector support tube, and barrel pixel detector inner shield and support rails, are determined using these vertices. These measurements are important for detector simulations, detector upgrades, and to identify any changes in the positions of inactive elements

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015–2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios
    corecore