13 research outputs found

    Qualitative Theory of Switched Integro-differential Equations with Applications

    Get PDF
    Switched systems, which are a type of hybrid system, evolve according to a mixture of continuous/discrete dynamics and experience abrupt changes based on a switching rule. Many real-world phenomena found in branches of applied math, computer science, and engineering are naturally modelled by hybrid systems. The main focus of the present thesis is on hybrid impulsive systems with distributed delays (HISD). That is, studying the qualitative behaviour of switched integro-differential systems with impulses. Important applications of impulsive systems can be found in stabilizing control (e.g. using impulsive control in combination with switching control) and epidemiology (e.g. pulse vaccination control strategies), both of which are studied in this work. In order to ensure the models are well-posed, some fundamental theory is developed for systems with bounded or unbounded time-delays. Results on existence, uniqueness, and continuation of solutions are established. As solutions of HISD are generally not known explicitly, a stability analysis is performed by extending the current theoretical approaches in the switched systems literature (e.g. Halanay-like inequalities and Razumikhin-type conditions). Since a major field of research in hybrid systems theory involves applying hybrid control to problems, contributions are made by extending current results on stabilization by state-dependent switching and impulsive control for unstable systems of integro-differential equations. The analytic results found are applied to epidemic models with time-varying parameters (e.g. due to changes in host behaviour). In particular, we propose a switched model of Chikungunya disease and study its long-term behaviour in order to develop threshold conditions guaranteeing disease eradication. As a sequel to this, we look at the stability of a more general vector-borne disease model under various vaccination schemes. Epidemic models with general nonlinear incidence rates and age-dependent population mixing are also investigated. Throughout the thesis, computational methods are used to illustrate the theoretical results found

    A Study of Infectious Disease Models with Switching

    Get PDF
    Infectious disease models with switching are constructed and investigated in detail. Modelling infectious diseases as switched systems, which are systems that combine continuous dynamics with discrete logic, allows for the use of methods from switched systems theory. These methods are used to analyze the stability and long-term behaviour of the proposed switched epidemiological models. Switching is first incorporated into epidemiological models by assuming the contact rate to be time-dependent and better approximated by a piecewise constant. Epidemiological models with switched incidence rates are also investigated. Threshold criteria are established that are sufficient for the eradication of the disease, and, hence, the stability of the disease-free solution. In the case of an endemic disease, some criteria are developed that establish the persistence of the disease. Lyapunov function techniques, as well as techniques for stability of impulsive or non-impulsive switched systems with both stable and unstable modes are used. These methods are first applied to switched epidemiological models which are intrinsically one-dimensional. Multi-dimensional disease models with switching are then investigated in detail. An important part of studying epidemiology is to construct control strategies in order to eradicate a disease, which would otherwise be persistent. Hence, the application of controls schemes to switched epidemiological models are investigated. Finally, epidemiological models with switched general nonlinear incidence rates are considered. Simulations are given throughout to illustrate our results, as well as to make some conjectures. Some conclusions are made and future directions are given

    EXISTENCE RESULTS FOR A CLASS OF HYBRID SYSTEMS WITH INFINITE DELAY

    Get PDF
    Abstract. In this paper, the existence, uniqueness, and continuation of solutions to switched systems with infinite delay and impulses is investigated. Both time-dependent and state-dependent switching are considered. The main results on existence and uniqueness are proved by adjusting classical techniques to account for impulses, infinite delay, and switches. Extended and global existence results are given for different types of switching rules. The results found are also applicable to impulsive switched systems with finite delay. An epidemic model is presented to illustrate the results

    Identifiability and Observability of Nonsmooth Systems via Taylor-like Approximations

    Full text link
    New sensitivity-based methods are developed for determining identifiability and observability of nonsmooth input-output systems. More specifically, lexicographic calculus is used to construct nonsmooth sensitivity rank condition (SERC) tests, which we call lexicographic SERC (L-SERC) tests. The introduced L-SERC tests are: (i) practically implementable and amenable to large-scale problems; (ii) accurate since they directly treat the nonsmoothness while avoiding, e.g., smoothing approximations; and (iii) analogous to (and indeed recover) their smooth counterparts. To accomplish this, a first-order Taylor-like approximation theory is developed using lexicographic differentiation to directly treat nonsmooth functions. A practically implementable algorithm is proposed that determines partial structural identifiability or observability, a useful characterization in the nonsmooth setting. Lastly, the theory is illustrated through an application in climate modeling

    Infectious disease modeling: a hybrid system approach

    Full text link
    This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes

    Generalized Derivatives of Differential–Algebraic Equations

    Full text link
    Nonsmooth equation-solving and optimization algorithms which require local sensitivity information are extended to systems with nonsmooth parametric differential–algebraic equations embedded. Nonsmooth differential–algebraic equations refers here to semi-explicit differential–algebraic equations with algebraic equations satisfying local Lipschitz continuity and differential right-hand side functions satisfying Carathéodory-like conditions. Using lexicographic differentiation, an auxiliary nonsmooth differential–algebraic equation system is obtained whose unique solution furnishes the desired parametric sensitivities. More specifically, lexicographic derivatives of solutions of nonsmooth parametric differential–algebraic equations are obtained. Lexicographic derivatives have been shown to be elements of the plenary hull of the Clarke (generalized) Jacobian and thus computationally relevant in the aforementioned algorithms. To accomplish this goal, the lexicographic smoothness of an extended implicit function is proved. Moreover, these generalized derivative elements can be calculated in tractable ways thanks to recent advancements in nonsmooth analysis. Forward sensitivity functions for nonsmooth parametric differential–algebraic equations are therefore characterized, extending the classical sensitivity results for smooth parametric differential–algebraic equations.Natural Sciences and Engineering Research Council of CanadaNovartis-MIT Center for Continuous Manufacturin

    Nonsmooth differential-algebraic equations in chemical engineering

    Full text link
    This article advocates a nonsmooth differential-algebraic equations (DAEs) modeling paradigm for dynamic simulation and optimization of process operations. A variety of systems encountered in chemical engineering are traditionally viewed as exhibiting hybrid continuous and discrete behavior. In many cases such discrete behavior is nonsmooth (i.e. continuous but nondifferentiable) rather than discontinuous, and is appropriately modeled by nonsmooth DAEs. A computationally relevant theory of nonsmooth DAEs (i.e. well-posedness and sensitivity analysis) has recently been established (Stechlinski and Barton, 2016a, 2017) which is suitable for numerical implementations that scale efficiently for large-scale dynamic optimization problems. Challenges posed by competing hybrid modeling approaches for process operations (e.g. hybrid automata) are highlighted as motivation for the nonsmooth DAEs approach. Several examples of process operations modeled as nonsmooth DAEs are given to illustrate their wide applicability before presenting the appropriate mathematical theory.Natural Sciences and Engineering Research Council of Canad

    Generalized Sensitivity Analysis of Nonlinear Programs

    Full text link
    Copyright © by SIAM. This paper extends classical sensitivity results for nonlinear programs to cases in which parametric perturbations cause changes in the active set. This is accomplished using lexicographic directional derivatives, a recently developed tool in nonsmooth analysis based on Nesterov's lexicographic differentiation. A nonsmooth implicit function theorem is augmented with generalized derivative information and applied to a standard nonsmooth reformulation of the parametric KKT system. It is shown that the sufficient conditions for this implicit function theorem variant are implied by a KKT point satisfying the linear independence constraint qualification and strong second-order sufficiency. Mirroring the classical theory, the resulting sensitivity system is a nonsmooth equation system which admits primal and dual sensitivities as its unique solution. Practically implementable algorithms are provided for calculating the nonsmooth sensitivity system's unique solution, which is then used to furnish B-subdifferential elements of the primal and dual variable solutions by solving a linear equation system. Consequently, the findings in this article are computationally relevant since dedicated nonsmooth equation-solving and optimization methods display attractive convergence properties when supplied with such generalized derivative elements. The results have potential applications in nonlinear model predictive control and problems involving dynamic systems with mathematical programs embedded. Extending the theoretical treatments here to sensitivity analysis theory of other mathematical programs is also anticipated

    Generalized sensitivity analysis of nonlinear programs using a sequence of quadratic programs

    Full text link
    Local sensitivity information is obtained for KKT points of parametric NLPs that may exhibit active set changes under parametric perturbations; under appropriate regularity conditions, computationally relevant generalized derivatives of primal and dual variable solutions of parametric NLPs are calculated. Ralph and Dempe obtained directional derivatives of solutions of parametric NLPs exhibiting active set changes from the unique solution of an auxiliary quadratic program. This article uses lexicographic directional derivatives, a newly developed tool in nonsmooth analysis, to generalize the classical NLP sensitivity analysis theory of Ralph and Dempe. By viewing said auxiliary quadratic program as a parametric NLP, the results of Ralph and Dempe are applied to furnish a sequence of coupled QPs, whose unique solutions yield generalized derivative information for the NLP. A practically implementable algorithm is provided. The theory developed here is motivated by widespread applications of nonlinear programming sensitivity analysis, such as in dynamic control and optimization problems
    corecore