179 research outputs found
Hydro-physical processes at the plunge point: an analysis using satellite and in situ data
The plunge point is the main mixing point between river and epilimnetic reservoir water. Plunge point monitoring is essential for understanding the behavior of density currents and their implications for reservoir. The use of satellite imagery products from different sensors (Landsat TM band 6 thermal signatures and visible channels) for the characterization of the river-reservoir transition zone is presented in this study. It is demonstrated the feasibility of using Landsat TM band imagery to discern the subsurface river plumes and the plunge point. The spatial variability of the plunge point evident in the hydrologic data illustrates the advantages of synoptic satellite measurements over in situ point measurements alone to detect the river-reservoir transition zone. During the dry season, when the river-reservoir water temperature differences vanish and the river circulation is characterized by interflow-overflow, the river water inserts into the upper layers of the reservoir, affecting water quality. The results indicate a good agreement between hydrologic and satellite data and that the joint use of thermal and visible channel data for the operational monitoring of a plunge point is feasible. The deduced information about the density current from this study could potentially be assimilated into numerical models and hence be of significant interest for environmental and climatological research
B -> K^* gamma from D -> K^* l nu
The B -> K^* gamma branching fraction is predicted using heavy quark spin
symmetry at large recoil to relate the tensor and (axial-)vector form factors,
using heavy quark flavor symmetry to relate the B decay form factors to the
measured D -> K^* l nu form form factors, and extrapolating the semileptonic B
decay form factors to large recoil assuming nearest pole dominance. This
prediction agrees with data surprisingly well, and we comment on its
implications for the extraction of |Vub| from B -> rho l nu.Comment: 10 page
Heavy-to-Light Form Factors in the Final Hadron Large Energy Limit of QCD
We argue that the Large Energy Effective Theory (LEET), originally proposed
by Dugan and Grinstein, is applicable to exclusive semileptonic, radiative and
rare heavy-to-light transitions in the region where the energy release E is
large compared to the strong interaction scale and to the mass of the final
hadron, i.e. for q^2 not close to the zero-recoil point. We derive the
Effective Lagrangian from the QCD one, and show that in the limit of heavy mass
M for the initial hadron and large energy E for the final one, the heavy and
light quark fields behave as two-component spinors. Neglecting QCD
short-distance corrections, this implies that there are only three form factors
describing all the pseudoscalar to pseudoscalar or vector weak current matrix
elements. We argue that the dependence of these form factors with respect to M
and E should be factorizable, the M-dependence (sqrt(M)) being derived from the
usual heavy quark expansion while the E-dependence is controlled by the
behaviour of the light-cone distribution amplitude near the end-point u=1. The
usual expectation of the (1-u) behaviour leads to a 1/E^2 scaling law, that is
a dipole form in q^2. We also show explicitly that in the appropriate limit,
the Light-Cone Sum Rule method satisfies our general relations as well as the
scaling laws in M and E of the form factors, and obtain very compact and simple
expressions for the latter. Finally we note that this formalism gives
theoretical support to the quark model-inspired methods existing in the
literature.Comment: Latex2e, 25 pages, no figure. Slight changes in the title and the
phrasing. Misprint in Eq. (25) corrected. To appear in Phys. Rev.
The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies
Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti
Neutrino Democracy, Fermion Mass Hierarchies And Proton Decay From 5D SU(5)
The explanation of various observed phenomena such as large angle neutrino
oscillations, hierarchies of charged fermion masses and CKM mixings, and
apparent baryon number conservation may have a common origin. We show how this
could occur in 5D SUSY SU(5) supplemented by a flavor symmetry
and additional matter supermultiplets called 'copies'. In addition, the proton
decays into , with an estimated lifetime of order
yrs. Other decay channels include and with comparable rates. We
also expect that BRBR
Hierarchical Quark Mass Matrices
I define a set of conditions that the most general hierarchical Yukawa mass
matrices have to satisfy so that the leading rotations in the diagonalization
matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch
structures, examples of such hierarchical structures include also matrices with
(1,3) elements of the same order or even much larger than the (1,2) elements.
Such matrices can be obtained in the framework of a flavor theory. To leading
order, the values of the angle in the (2,3) plane (s_{23}) and the angle in the
(1,2) plane (s_{12}) do not depend on the order in which they are taken when
diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix
parametrizations that consists of at least one (1,2) and one (2,3) rotation may
be suitable. In the particular case when the s_{13} diagonalization angles are
sufficiently small compared to the product s_{12}s_{23}, two special CKM
parametrizations emerge: the R_{12}R_{23}R_{12} parametrization follows with
s_{23} taken before the s_{12} rotation, and vice versa for the
R_{23}R_{12}R_{23} parametrization.Comment: LaTeX, 19 pages. References added, minor changes in text. Version
published in Phys. Rev.
Yet Another Extension of the Standard Model: Oases in the Desert?
We have searched for conceptually simple extensions of the standard model,
and describe here a candidate model which we find attractive. Our starting
point is the assumption that off-diagonal CKM mixing matrix elements are
directly related by lowest order perturbation theory to the quark mass
matrices. This appears to be most easily and naturally implemented by assuming
that all off-diagonal elements reside in the down-quark mass matrix. This
assumption is in turn naturally realized by introducing three generations of
heavy, electroweak-singlet down quarks which couple to the Higgs sector
diagonally in flavor, while mass-mixing off-diagonally with the light
down-quarks. Anomaly cancellation then naturally leads to inclusion of
electroweak vector-doublet leptons. It is then only a short step to completing
the extension to three generations of fundamental representations of E(6).
Assuming only that the third generation B couples to the Higgs sector at least
as strongly as does the top quark, the mass of the B is roughly estimated to
lie between 1.7 TeV and 10 TeV, with lower-generation quarks no heavier. The
corresponding guess for the new leptons is a factor two lower. Within the
validity of the model, flavor and CP violation are ``infrared'' in nature,
induced by semi-soft mass mixing terms, not Yukawa couplings. If the Higgs
couplings of the new quarks are flavor symmetric, then there necessarily must
be at least one ``oasis'' in the desert, induced by new radiative corrections
to the top quark and Higgs coupling constants, and roughly at 1000 TeV.Comment: LaTex, 40 page
Model of the Quark Mixing Matrix
The structure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is analyzed from
the standpoint of a composite model. A model is constructed with three families
of quarks, by taking tensor products of sufficient numbers of spin-1/2
representations and imagining the dominant terms in the mass matrix to arise
from spin-spin interactions. Generic results then obtained include the familiar
relation , and a less frequently
seen relation . The magnitudes of
and come out naturally to be of the right order. The phase in
the CKM matrix can be put in by hand, but its origin remains obscure.Comment: Presented by Mihir P. Worah at DPF 92 Meeting, Fermilab, November,
1992. 3 pages, LaTeX fil
- …