2 research outputs found

    Optimizing the Formation of DMAs in a Water Distribution Network through Advanced Modelling

    No full text
    Water pressure management in a water distribution network (WDN) is a key component applied to achieve desirable water quality as well as a trouble-free operation of the network. This paper presents a hybrid, two-stage approach, to provide optimal separation of a WDN into District Metered Areas (DMAs), improving both water age and pressure. The first stage aims to divide the WDN into smaller areas via the Geometric Partitioning method, which is based on Recursive Coordinate Bisection (RCB). Subsequently, the Student’s t-mixture model (SMM) is applied to each area, providing an optimal placement of isolation valves and separating the network in DMAs. The model is evaluated on a realistic network generated through Watergems and is compared against one variation of it implemented, including the Gaussian Mixture Model (GMM) as well as the Genetic Algorithm (GA) approach, obtaining impressive performance. The implementation of both stages was deployed in a MATLAB environment through the Epanet toolkit. The proposed system is very promising, especially for large size WDNs due to the decreased running time and noteworthy reduction of pressure and water age

    Optimizing the Formation of DMAs in a Water Distribution Network Applying Geometric Partitioning (GP) and Gaussian Mixture Models (GMMs)

    No full text
    In the last three decades, the need of achieving a reliable water distribution system has become more eminent for both the consumer’s satisfaction and the efficient management of water sources. The purpose of this paper is to provide an optimal separation of a water distribution network (WDN) into District Metered Areas (DMAs) in order to ensure that the delivered water is of proper age and pressure. At first, the water distribution network is divided into smaller areas via the method of Geometric Partitioning, which is based on Recursive Coordinate Bisection (RCB). Subsequently, Gaussian Mixture Modelling (GMM) solution is applied, obtaining an optimal placement of isolation valves and separation of the WDN into DMAs. The performance of the proposed system is evaluated on two different networks and is compared against the Genetic Algorithm (GA) tool, constituting a very promising approach, especially for sizeable water distribution networks due to the diminished running time and the noteworthy reduction of pressure and water age
    corecore