34 research outputs found

    Variable numerical-aperture temporal-coherence measurement of resonant-cavity LEDs

    Get PDF
    The first interferometric measurements of temporal-coherence length variation with numerical aperture (NA) are described for 650 nm, resonant-cavity light-emitting diodes (LEDs) agreeing with spectrally derived results. The interferometrically measured coherence length (22 mum to 32 mum) reduced by 37% for a 0.42 increase in NA. For a larger range of NA (0-1), this would give coherence lengths (10 mum-40 mum) lying in the gap between that of conventional LEDs (similar to5 mum) and superluminescent diodes (similar to60 mum)

    Confined Surface Plasmon-Polariton Amplifiers

    Get PDF

    Interplay between solid state microstructure and photophysics for poly(9,9-dioctylfluorene) within oriented polyethylene hosts

    No full text
    We present a study of isotropic and uniaxially oriented binary blend films comprising ≤1 wt % of the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) dispersed in both ultra‐high molecular weight (UHMW) and linear‐low‐density (LLD) polyethylene (PE). Polarized absorption, fluorescence and Raman spectroscopy, scanning electron microscopy, and X‐ray diffraction are used to characterize the samples before and after tensile deformation. Results show that blend films can be prepared with PFO chains adopting a combination of several distinct molecular conformations, namely glassy, crystalline, and the so‐called β‐phase, which directly influences the resulting optical properties. Both PFO concentration and drawing temperature strongly affect the alignment of PFO chains during the tensile drawing of the blend films. In both PE hosts, crystallization of PFO takes place during drawing; the resulting ordered chains show optimal optical anisotropy. Our results clarify the PFO microstructure in oriented blends with PE and the processing conditions required for achieving the maximal optical anisotropy.ISSN:0887-6266ISSN:0098-1273ISSN:1099-048

    The influence of backbone fluorination on the dielectric constant of conjugated polythiophenes

    No full text
    The ability to modify or enhance the dielectric constant of semiconducting polymers can prove valuable for a range of optoelectronic and microelectronic applications. In the case of organic photovoltaics, increasing the dielectric constant of the active layer has often been suggested as a method to control charge generation, recombination dynamics, and ultimately, the power conversion efficiencies. In this contribution, the impact that the degree and pattern of fluorination has on the dielectric constant of poly(3-octylthiophene) (P3OT), a more soluble analogue of the widely studied conjugated material poly(3-hexylthiophene), is explored. P3OT and its backbone-fluorinated analogue, F-P3OT, are compared along with a block and alternating copolymer version of these materials. It is found that the dielectric constant of the polymer thin films increases as the degree of backbone fluorination increases, in a trend consistent with density functional theory calculations of the dipole moment

    Controlling molecular conformation for highly efficient and stable deep-blue copolymer light-emitting diodes

    Get PDF
    We report a novel approach to the achievement of deep-blue, high-efficiency, and long-lived solution processed polymer light-emitting diodes (PLEDs) via a simple molecular-level conformation change whereby we introduce rigid β-phase segments into a 95% fluorene - 5% arylamine copolymer emission layer (EML). The arylamine moieties at low density act as efficient exciton formation sites in PLEDs whilst the conformational change alters the nature of the dominant luminescence from a broad, charge-transfer like emission to a significantly blue-shifted and highly vibronically structured, excitonic emission. As a consequence, we observe a significant improvement in Commission International de L'Eclairage (CIE) (x, y) co-ordinates from (0.149, 0.175) to (0.145, 0.123) whilst maintaining high efficiency and improving stability. We achieve peak luminous efficiency, Ρ = 3.60 cd/A and luminous power efficiency, Ρw = 2.44 lm/W; values that represent state of the art performance for single copolymer deep-blue PLEDs. These values are five-fold better than for otherwise-equivalent, β-phase poly(9,9-dioctylfluorene) (PFO) EML PLEDs (0.70 cd/A and 0.38 lm/W). This report represents the first demonstration of the use of molecular conformation as a vector to control the optoelectronic properties of a fluorene copolymer; previous examples have been confined to homopolymers

    Dip-pen patterning of poly(9,9-dioctylfluorene) chain-conformation-based nano-photonic elements

    Get PDF
    Metamaterials are a promising new class of materials, in which sub-wavelength physical structures, rather than variations in chemical composition, can be used to modify the nature of their interaction with electromagnetic radiation. Here we show that a metamaterials approach, using a discrete physical geometry (conformation) of the segments of a polymer chain as the vector for a substantial refractive index change, can be used to enable visible wavelength, conjugated polymer photonic elements. In particular, we demonstrate that a novel form of dip-pen nanolithography provides an effective means to pattern the so-called β-phase conformation in poly(9,9-dioctylfluorene) thin films. This can be done on length scales ≤500 nm, as required to fabricate a variety of such elements, two of which are theoretically modelled using complex photonic dispersion calculations

    Solution-crystallization and related phenomena in 9,9-dialkyl-fluorene polymers. I. Crystalline polymer-solvent compound formation for poly(9,9-dioctylfluorene)

    No full text
    Polymer-solvent compound formation, occurring via co-crystallization of polymer chains and selected small-molecular species, is demonstrated for the conjugated polymer poly(9,9-dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X-ray diffraction providing additional information on the resulting microstructure. It is shown that PFO-solvent compounds comprise an ultra-regular molecular-level arrangement of the semiconducting polymer host and small-molecular solvent guest. Crystals form following adoption of the planar-zigzag β-phase chain conformation, which, due to its geometry, creates periodic cavities that accommodate the ordered inclusion of solvent molecules of matching volume. The findings are formalized in terms of nonequilibrium temperature–composition phase diagrams. The potential applications of these compounds and the new functionalities that they might enable are also discussed. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1481–149
    corecore