25 research outputs found

    Damage evolution in marble under uniaxial compression monitored by Pressure Stimulated Currents and Acoustic Emissions

    Get PDF
    The spatiotemporal evolution of damage in marble speci­mens under uniaxial compression is monitored using Pressure Stimulated Currents (PSCs) and Acoustic Emissions (AEs). The novelty of the study is the use of an integrated grid of sensors (instead of a single pair of electrodes) to detect the weak electrical signals, emitted during loading. The use of such a grid of sensors does indeed enhance the capabilities of the PSC technique providing valuable information about the initiation and propagation of micro-fracturing at the interior of the specimens. The experimental results indicate that both the im­proved b-value of the AE hits and the energy of the PSCs offer information about the proximity of the applied stress to that causing fracture. It is thus con­­cluded that both quantities could be considered as pre-failure indicators

    Acoustic Emissions versus Pressure Stimulated Currents during bending of restored marble epistyles: Preliminary results

    Get PDF
    The efficiency of two modern sensing techniques, namely the “Acoustic Emissions” and the “Pressure Stimulated Currents” ones, when they are used as Continuous Structural Health Monitoring tools, is assessed experimentally. The protocol includes multi-point bending of an accurate copy of a fractured marble epistyle of the Parthenon’s Temple on the Acropolis of Athens, under a scale of 1:3. The integrity of the epistyle is restored with three pairs of bolted titanium bars, according to the pioneering technique developed by the scientists of the “Committee for the Conservation of the Acropolis Monuments”. The data provided by the above techniques are considered in juxtaposition to each other and also in comparison to data provided by the “Digital Image Correlation” technique. It is concluded that, at least from a qualitative point of view, the data of all three techniques are in good mutual agreement. Combined exploitation of the various sets of experimental data enlightens interesting aspects concerning the succession of failure mechanisms activated during the loading procedure, revealing the critical role of the internal interfaces characterizing the restored epistyle. Moreover it is definitely indicated that both the “Acoustic Emissions” and the “Pressure Stimulated Currents” techniques provide clear signs of upcoming failure well before macroscopically visible damages are detected at the external surface of the specimen

    Acoustic emissions and pressure stimulated currents experimental techniques used to verify Kaiser effect during compression tests of Dionysos marble

    No full text
    The damage development due to externally applied mechanical stress is a hot topic of interest involving several applications of everyday life, like civil engineering, monument restoration, construction evaluation and health monitoring. Repetitive loadings of brittle materials cause internal damages that gradually extend, leading to inevitable failures. Such processes are studied under the concept of the materials’ mechanical memory effect that is widely known as Kaiser effect. The Kaiser effect states that a structure will only suffer further internal damaging when exposed to applied stresses higher than previously encountered. Certain conditions lead to a violation of the Kaiser effect, known as the Felicity effect, quantitatively measured using the Felicity Ratio. This work presents the experimental results when repetitive mechanical load loops are applied on marble specimens, while concurrent Acoustic Emission (AE) and Pressure Stimulated Currents (PSC) measurements are conducted. The collected AE and PSC data are studied in combination with the mechanical data, like mechanical stress and strain, under the frame of the Kaiser effect. It is clearly seen that the Felicity ratio strongly depends on the stress range the material is subjected to, with regard to the elastic or plastic deformation region

    Non-Extensive Statistical Analysis of Acoustic Emissions: The Variability of Entropic Index q during Loading of Brittle Materials Until Fracture

    No full text
    Non-extensive statistical mechanics (NESM), introduced by Tsallis based on the principle of non-additive entropy, is a generalisation of the Boltzmann–Gibbs statistics. NESM has been shown to provide the necessary theoretical and analytical implementation for studying complex systems such as the fracture mechanisms and crack evolution processes that occur in mechanically loaded specimens of brittle materials. In the current work, acoustic emission (AE) data recorded when marble and cement mortar specimens were subjected to three distinct loading protocols until fracture, are discussed in the context of NESM. The NESM analysis showed that the cumulative distribution functions of the AE interevent times (i.e., the time interval between successive AE hits) follow a q-exponential function. For each examined specimen, the corresponding Tsallis entropic q-indices and the parameters βq and τq were calculated. The entropic index q shows a systematic behaviour strongly related to the various stages of the implemented loading protocols for all the examined specimens. Results seem to support the idea of using the entropic index q as a potential pre-failure indicator for the impending catastrophic fracture of the mechanically loaded specimens

    Electrical Methods for Sensing Damage in Cement Mortar Beams Combined with Acoustic Emissions

    No full text
    The temporal variation in terms of the “time-to-failure” parameter of the recordings of the electrical resistance and the acoustic emissions from concurrent measurements in three cement mortar specimens of prismatic shape that were subjected to a three-point bending test until fracture are studied. The novelty of the work at hand lies in the demonstration that the electrical resistance is described by a power law during the last stages of the loading protocols. The onset of the validity of the power law is indicative of the specimens’ imminent fracture, thus providing a useful pre-failure indicator. The above findings are supported by the analysis of the recorded acoustic signals in terms of the F-function and the Ib-value formulations

    Relaxation phenomena of electrical signal emissions from rock following application of abrupt mechanical stress

    No full text
    <p>The emission of electrical signals during application of mechanical stress to brittle geo-materials (the so-called pressure-stimulated current; PSC) can provide significant information regarding the mechanical status of a studied rock sample. PSCs originate as a result of the opening of cracks and microfractures in rock. In this study, such electrical signal emissions are detected and studied when rock samples are subjected to step-wise mechanical stress, increased from low stress levels vL up to higher stress levels vH. This increase is performed at high stress rates and consequently the stress is maintained practically constant for a long period. During this time, the applied stress reaches its maximum value, and the emitted PSC decays gradually and relaxes back to a minimum value. The conducted experiments suggest that the characteristics of the relaxation processes of the PSC depend directly on the high level of the applied stress that is maintained constant after the application of each stress step. Analysis of the macroscopic parameters that characterize the relaxation phenomenon of the PSC provides clear information regarding the proximity of the applied stress to the fracture limit of the rock sample.</p&gt

    Air Pollution Monitoring via Wireless Sensor Networks: The Investigation and Correction of the Aging Behavior of Electrochemical Gaseous Pollutant Sensors

    No full text
    The continuously growing human activity in large and densely populated cities pollutes air and consequently puts public health in danger. This is why air quality monitoring is necessary in all urban environments. However, the creation of dense air monitoring networks is extremely costly because it requires the usage of a great number of air monitoring stations that are quite expensive. Instead, the usage of wireless sensor networks (WSNs) that incorporate low-cost electrochemical gas sensors provides an excellent alternative. Actually, sensors of this kind that are recommended for low-cost air quality monitoring applications may provide relatively precise measurements. However, the reliability of such sensors during their operational life is questionable. The research work presented in this article not only experimentally examined the correlation that exists between the validity of the measurements obtained from low-cost gas sensors and their aging, but also proposes novel corrective formulae for gas sensors of two different types (i.e., NO2, O3), which are aimed at alleviating the impact of aging on the accuracy of measurements. The following steps were conducted in order to both study and lessen the aging of electrochemical sensors: (i) a sensor network was developed to measure air quality at a place near official instruments that perform corresponding measurements; (ii) the collected data were compared to the corresponding recordings of the official instruments; (iii) calibration and compensation were performed using the electrochemical sensor vendor instructions; (iv) the divergence between the datasets was studied for various periods of time and the impact of aging was studied; (v) the compensation process was re-evaluated and new compensation coefficients were produced for all periods; (vi) the new compensation coefficients were used to shape formulae that automatically calculate the new coefficients with respect to the sensors’ aging; and (vii) the performance of the overall procedure was evaluated through the comparison of the final outcomes with real data

    Revealing the Proximity of Concrete Specimens to Their Critical Damage Level by Exploring the Cumulative Counts of the Acoustic Emissions in the Natural Time Domain

    No full text
    This study aims to explore the possibility of detecting indices that could potentially provide warning about the proximity of internal damage to critical levels, beyond which catastrophic fracture is impending. In this direction, advantage was taken of the Cumulative Counts that were recorded during the mechanical loading of specimens made of either plain or fiber-reinforced concrete. The parameter adopted for the analysis was the average rate of change in the Cumulative Counts. Τhe evolution of the specific parameter was considered in the Natural Time Domain, rather than in the conventional time domain. Experimental data from already published three-point bending protocols were used. It was revealed that the specific parameter attains, systematically, a limiting value equal to unity exactly at the instant at which the load reaches its maximum value, which is not identical to the load recorded at the instant of fracture. Similar observations were made for a complementary protocol with uniaxially compressed mortar specimens. The conclusions drawn were supported by the b-values analysis of the respective acoustic data, again in terms of Natural Time. It is, thus, indicated that the evolution of the average rate of change in the Cumulative Counts in the Natural Time Domain provides an index about the proximity of the applied load to a value beyond which the specimen enters into the critical state of impending fracture
    corecore