137 research outputs found

    Current state of the art of regional hyperthermia treatment planning: A review

    Get PDF
    Locoregional hyperthermia, i.e. increasing the tumor temperature to 40-45 °C using an external heating device, is a very effective radio and chemosensitizer, which significantly improves clinical outcome. There is a clear thermal dose-effect relation, but the pursued optimal thermal dose of 43 °C for 1 h can often not be realized due to treatment limiting hot spots in normal tissue. Modern heating devices have a large number of independent antennas, which provides flexible power steering to optimize tumor heating and minimize hot spots, but manual selection of optimal settings is difficult. Treatment planning is a very valuable tool to improve locoregional heating. This paper reviews the developments in treatment planning software for tissue segmentation, electromagnetic field calculations, thermal modeling and optimization techniques. Over the last decade, simulation tools have become more advanced. On-line use has become possible by implementing algorithms on the graphical processing unit, which allows real-time computations. The number of applications using treatment planning is increasing rapidly and moving on from retrospective analyses towards assisting prospective clinical treatment strategies. Some clinically relevant applications will be discussed

    Majority versus minority dynamics: Phase transition in an interacting two-state spin system

    Full text link
    We introduce a simple model of opinion dynamics in which binary-state agents evolve due to the influence of agents in a local neighborhood. In a single update step, a fixed-size group is defined and all agents in the group adopt the state of the local majority with probability p or that of the local minority with probability 1-p. For group size G=3, there is a phase transition at p_c=2/3 in all spatial dimensions. For p>p_c, the global majority quickly predominates, while for p<p_c, the system is driven to a mixed state in which the densities of agents in each state are equal. For p=p_c, the average magnetization (the difference in the density of agents in the two states) is conserved and the system obeys classical voter model dynamics. In one dimension and within a Kirkwood decoupling scheme, the final magnetization in a finite-length system has a non-trivial dependence on the initial magnetization for all p.ne.p_c, in agreement with numerical results. At p_c, the exact 2-spin correlation functions decay algebraically toward the value 1 and the system coarsens as in the classical voter model.Comment: 11 pages, 3 figures, revtex4 2-column format; minor revisions for publication in PR

    Fluoroscopy-guided procedures in cardiology: is patient exposure being reduced over time?

    Get PDF
    The number of fluoroscopy-guided procedures in cardiology is increasing over time and it is appropriate to wonder whether technological progress or change of techniques is influencing patient exposure. The aim of this study is to examine whether patient dose has been decreasing over the years. Patient dose data of more than 7700 procedures were collected from two cardiology centres. A steady increase in the patient dose over the years was observed in both the centres for the two cardiological procedures included in this study. Significant increase in dose was also observed after the installation of a flat-panel detector. The increasing use of radial access may lead to an increase in the patient exposure. The monitoring of dose data over time showed a considerable increase in the patient exposure over time. Actions have to be taken towards dose reduction in both the centres

    A model for gelation with explicit solvent effects: Structure and dynamics

    Full text link
    We study a two-component model for gelation consisting of ff-functional monomers (the gel) and inert particles (the solvent). After equilibration as a simple liquid, the gel particles are gradually crosslinked to each other until the desired number of crosslinks has been attained. At a critical crosslink density the largest gel cluster percolates and an amorphous solid forms. This percolation process is different from ordinary lattice or continuum percolation of a single species in the sense that the critical exponents are new. As the crosslink density pp approaches its critical value pcp_c, the shear viscosity diverges: η(p)(pcp)s\eta(p)\sim (p_c-p)^{-s} with ss a nonuniversal concentration-dependent exponent.Comment: 6 pages, 9 figure

    Hopping Transport in the Presence of Site Energy Disorder: Temperature and Concentration Scaling of Conductivity Spectra

    Full text link
    Recent measurements on ion conducting glasses have revealed that conductivity spectra for various temperatures and ionic concentrations can be superimposed onto a common master curve by an appropriate rescaling of the conductivity and frequency. In order to understand the origin of the observed scaling behavior, we investigate by Monte Carlo simulations the diffusion of particles in a lattice with site energy disorder for a wide range of both temperatures and concentrations. While the model can account for the changes in ionic activation energies upon changing the concentration, it in general yields conductivity spectra that exhibit no scaling behavior. However, for typical concentrations and sufficiently low temperatures, a fairly good data collapse is obtained analogous to that found in experiment.Comment: 6 pages, 4 figure

    Acute coronary syndrome in patients younger than 30 years--aetiologies, baseline characteristics and long-term clinical outcome.

    Get PDF
    Coronary atherosclerosis begins early in life, but acute coronary syndromes in adults aged &lt;30 years are exceptional. We aimed to investigate the rate of occurrence, clinical and angiographic characteristics, and long-term clinical outcome of acute coronary syndrome (ACS) in young patients who were referred to two Swiss hospitals. From 1994 to 2010, data on all patients with ACS aged &lt;30 years were retrospectively retrieved from our database and the patients were contacted by phone or physician's visit. Baseline, lesion and procedural characteristics, and clinical outcome were compared between patients in whom an underlying atypical aetiology was found (non-ATS group; ATS: atherosclerosis) and patients in whom no such aetiology was detected (ATS group). The clinical endpoint was freedom from any major adverse cardiac event (MACE) during follow-up. A total of 27 young patients with ACS aged &lt;30 years were admitted during the study period. They accounted for 0.05% of all coronary angiograms performed. Mean patient age was 26.8 ± 3.5 years and 22 patients (81%) were men. Current smoking (81%) and dyslipidaemia (59%) were the most frequent risk factors. Typical chest pain (n = 23; 85%) and ST-segment elevation myocardial infarction (STEMI; n = 18 [67%]) were most often found. The ATS group consisted of 17 patients (63%) and the non-ATS group of 10 patients (37%). Hereditary thrombophilia was the most frequently encountered atypical aetiology (n = 4; 15%). At 5 years, mortality and MACE rate were 7% and 19%, respectively. ACS in young patients is an uncommon condition with a variety of possible aetiologies and distinct risk factors. In-hospital and 5-year clinical outcome is satisfactory

    Algebraic Self-Similar Renormalization in Theory of Critical Phenomena

    Full text link
    We consider the method of self-similar renormalization for calculating critical temperatures and critical indices. A new optimized variant of the method for an effective summation of asymptotic series is suggested and illustrated by several different examples. The advantage of the method is in combining simplicity with high accuracy.Comment: 1 file, 44 pages, RevTe

    Dynamic structure factor of the Ising model with purely relaxational dynamics

    Get PDF
    We compute the dynamic structure factor for the Ising model with a purely relaxational dynamics (model A). We perform a perturbative calculation in the ϵ\epsilon expansion, at two loops in the high-temperature phase and at one loop in the temperature magnetic-field plane, and a Monte Carlo simulation in the high-temperature phase. We find that the dynamic structure factor is very well approximated by its mean-field Gaussian form up to moderately large values of the frequency ω\omega and momentum kk. In the region we can investigate, kξ5k\xi \lesssim 5, ωτ10\omega \tau \lesssim 10, where ξ\xi is the correlation length and τ\tau the zero-momentum autocorrelation time, deviations are at most of a few percent.Comment: 21 pages, 3 figure

    Universality and scaling study of the critical behavior of the two-dimensional Blume-Capel model in short-time dynamics

    Full text link
    In this paper we study the short-time behavior of the Blume-Capel model at the tricritical point as well as along the second order critical line. Dynamic and static exponents are estimated by exploring scaling relations for the magnetization and its moments at early stage of the dynamic evolution. Our estimates for the dynamic exponents, at the tricritical point, are z=2.215(2)z= 2.215(2) and θ=0.53(2)\theta= -0.53(2).Comment: 12 pages, 9 figure

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure
    corecore