4 research outputs found
On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy
Purpose: This research, investigates the viability of using the Electronic portal imaging device (EPID) coupled with the treatment planning system (TPS), to calculate the doses delivered and verify agreement with the treatment plan. The results of QA analysis using the EPID, Delta4 and fluence calculations using the multi-leaf collimator (MLC) dynalog files on 10 IMRT patients are presented in this study.Methods: EPID Fluence Images in integrated mode and Dynalog files for each field were acquired for 10 IMRT (6MV) patients and processed through an in house MatLab program to create an opening density matrix (ODM) which was used as the input fluence for dose calculation with the TPS (Pinnacle3, Philips). The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high definition MLC. The resulting dose distributions were then exported to VeriSoft (PTW) where a 3D gamma was calculated using 3 mm-3% criteria. The Scandidos Delta4 phantom was also used to measure a 2D dose distribution for all 10 patients and a 2D gamma was calculated for each patient using the Delta4 software.Results: The average 3D gamma for all 10 patients using the EPID images was 98.2% ± 2.6%. The average 3D gamma using the dynalog files was 94.6% ± 4.9%. The average 2D gamma from the Delta4 was 98.1% ± 2.5%. The minimum 3D gamma for the EPID and dynalog reconstructed dose distributions was found on the same patient which had a very large PTV, requiring the jaws to open to the maximum field size. Conclusion: Use of the EPID, combined with a TPS is a viable method for QA of IMRT plans. A larger ODM size can be implemented to accommodate larger field sizes. An adaptation of this process to Volumetric Arc Therapy (VMAT) is currently under way.-----------------------------Cite this article as: Defoor D, Mavroidis P, Quino L, Gutierrez A, Papanikolaou N, Stathakis S. On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy. Int J Cancer Ther Oncol 2014; 2(2):020219. DOI: 10.14319/ijcto.0202.1
Daily fraction dose recalculation based on rigid registration using Cone Beam CT
Purpose: To calculate the daily fraction dose for CBCT recalculations based on rigid registration and compare it to the planned CT doses.Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen) were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. Pinnacle was used to re-contour the regions of interest (ROI) for the specific CBCT by copying the contours from the original CT plan, planned by the prescribing physician, onto each daily CBCT and then manually reshaping contours to match the ROIs. A new plan is then created with the re-contoured CBCT as primary image in order to calculate the daily dose delivered to each ROI. The DVH values are then exported into Excel and overlaid onto the original CT DVH to produce a graph.Results: For the SBRT lung patients, we found that there were small daily volume changes in the lungs, trachea and esophagus. For almost all regions of interest we found that the dose received each day was less than the predicted dose of the planned CT while the PTV dose was relatively the same each day. The results for the prostate patients were similar, showing slight differences in the DVH values for different days in the rectum and bladder but similar PTV.Conclusion: By comparing daily fraction dose between the re-contoured CBCT images and the original planned CT show that PTV coverage for both prostate and SBRT, it has been shown that for PTV coverage, a planned CT is adequate. However, there are differences between the dose for the organs surrounding the PTV. The dose difference is less than the planned in most instances.-----------------------Cite this article as: Bosse C, Tuohy R, Mavroidis P, Shi Z, Crownover R, Gutierrez A, Papanikolaou N, Stathakis S. Daily fraction dose recalculation based on rigid registration using Cone Beam CT. Int J Cancer Ther Oncol 2014; 2(2):020217. DOI: 10.14319/ijcto.0202.1
On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy
Purpose: This research, investigates the viability of using the Electronic portal imaging device (EPID) coupled with the treatment planning system (TPS), to calculate the doses delivered and verify agreement with the treatment plan. The results of QA analysis using the EPID, Delta4 and fluence calculations using the multi-leaf collimator (MLC) dynalog files on 10 IMRT patients are presented in this study.Methods: EPID Fluence Images in integrated mode and Dynalog files for each field were acquired for 10 IMRT (6MV) patients and processed through an in house MatLab program to create an opening density matrix (ODM) which was used as the input fluence for dose calculation with the TPS (Pinnacle3, Philips). The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high definition MLC. The resulting dose distributions were then exported to VeriSoft (PTW) where a 3D gamma was calculated using 3 mm-3% criteria. The Scandidos Delta4 phantom was also used to measure a 2D dose distribution for all 10 patients and a 2D gamma was calculated for each patient using the Delta4 software.Results: The average 3D gamma for all 10 patients using the EPID images was 98.2% ± 2.6%. The average 3D gamma using the dynalog files was 94.6% ± 4.9%. The average 2D gamma from the Delta4 was 98.1% ± 2.5%. The minimum 3D gamma for the EPID and dynalog reconstructed dose distributions was found on the same patient which had a very large PTV, requiring the jaws to open to the maximum field size. Conclusion: Use of the EPID, combined with a TPS is a viable method for QA of IMRT plans. A larger ODM size can be implemented to accommodate larger field sizes. An adaptation of this process to Volumetric Arc Therapy (VMAT) is currently under way.-----------------------------Cite this article as: Defoor D, Mavroidis P, Quino L, Gutierrez A, Papanikolaou N, Stathakis S. On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy. Int J Cancer Ther Oncol 2014; 2(2):020219. DOI: 10.14319/ijcto.0202.19</p
Daily fraction dose recalculation based on rigid registration using Cone Beam CT
Purpose: To calculate the daily fraction dose for CBCT recalculations based on rigid registration and compare it to the planned CT doses.Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen) were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. Pinnacle was used to re-contour the regions of interest (ROI) for the specific CBCT by copying the contours from the original CT plan, planned by the prescribing physician, onto each daily CBCT and then manually reshaping contours to match the ROIs. A new plan is then created with the re-contoured CBCT as primary image in order to calculate the daily dose delivered to each ROI. The DVH values are then exported into Excel and overlaid onto the original CT DVH to produce a graph.Results: For the SBRT lung patients, we found that there were small daily volume changes in the lungs, trachea and esophagus. For almost all regions of interest we found that the dose received each day was less than the predicted dose of the planned CT while the PTV dose was relatively the same each day. The results for the prostate patients were similar, showing slight differences in the DVH values for different days in the rectum and bladder but similar PTV.Conclusion: By comparing daily fraction dose between the re-contoured CBCT images and the original planned CT show that PTV coverage for both prostate and SBRT, it has been shown that for PTV coverage, a planned CT is adequate. However, there are differences between the dose for the organs surrounding the PTV. The dose difference is less than the planned in most instances.-----------------------Cite this article as: Bosse C, Tuohy R, Mavroidis P, Shi Z, Crownover R, Gutierrez A, Papanikolaou N, Stathakis S. Daily fraction dose recalculation based on rigid registration using Cone Beam CT. Int J Cancer Ther Oncol 2014; 2(2):020217. DOI: 10.14319/ijcto.0202.17</p