45 research outputs found

    Inverse Square Law of Gravitation in (2+1)-Dimensional Space-Time as a Consequence of Casimir Energy

    Full text link
    The gravitational effect of vacuum polarization in space exterior to a particle in (2+1)-dimensional Einstein theory is investigated. In the weak field limit this gravitational field corresponds to an inverse square law of gravitational attraction, even though the gravitational mass of the quantum vacuum is negative. The paradox is resolved by considering a particle of finite extension and taking into account the vacuum polarization in its interior.Comment: 10 pages, LaTeX, Report: UPR-0540-T, To appear in Physica Script

    Self-Dual Chern-Simons Solitons in (2+1)-Dimensional Einstein Gravity

    Full text link
    We consider here a generalization of the Abelian Higgs model in curved space, by adding a Chern--Simons term. The static equations are self-dual provided we choose a suitable potential. The solutions give a self-dual Maxwell--Chern--Simons soliton that possesses a mass and a spin

    Physical States of the Quantum Conformal Factor

    Get PDF
    The conformal factor of the spacetime metric becomes dynamical due to the trace anomaly of matter fields. Its dynamics is described by an effective action which we quantize by canonical methods on the Einstein universe R×S3R\times S^3. We find an infinite tower of discrete states which satisfy the constraints of quantum diffeomorphism invariance. These physical states are in one-to-one correspondence with operators constructed by integrating integer powers of the Ricci scalar.Comment: PlainTeX File, 34 page

    Exact Relativistic Two-Body Motion in Lineal Gravity

    Get PDF
    We consider the N-body problem in (1+1) dimensional lineal gravity. For 2 point masses (N=2) we obtain an exact solution for the relativistic motion. In the equal mass case we obtain an explicit expression for their proper separation as a function of their mutual proper time. Our solution gives the exact Hamiltonian to infinite order in the gravitational coupling constant.Comment: latex, 11 pages, 2 figures, final version to appear in Phys. Rev. Let

    Vortices in Bogomol'nyi Limit of Einstein Maxwell Higgs Theory with or without External Sources

    Full text link
    The Abelian Higgs model with or without external particles is considered in curved space. Using the dual transformation, we rewrite the model in terms of dual gauge fields and derive the Bogomol'nyi-type bound. We examine cylindrically symmetric solutions to Einstein equations and the first-order Bogomol'nyi equations, and find vortex solutions and vortex-particle composites which lie on the spatial manifold with global geometry described by a cylinder asymptotically or a two sphere in addition to the well-known cone.Comment: LaTeX, 23 pages, 10 LaTeX figures included, KHTP-93-05, SNUTP-93-100, DPNU-93-46. (A note and several references added

    Entropy generation in 2+1-dimensional Gravity

    Full text link
    The tunneling approach, for entropy generation in quantum gravity, is shown to be valid when applied to 3-D general relativity. The entropy of de Sitter and Reissner-Nordstr\"om external event horizons and of the 3-D black hole obtained by Ba\~nados et. al. is rederived from tunneling of the metric to these spacetimes. The analysis for spacetimes with an external horizon is carried out in a complete analogy with the 4-D case. However, we find significant differences for the black hole. In particular the initial configuration that tunnels to a 3-D black hole may not to yield an infinitely degenerate object, as in 4-D Schwarzschild black hole. We discuss the possible relation to the evaporation of the 3-D black hole.Comment: 22 pages, Tex, TAUP-2102-9

    Thermodynamics and Evaporation of the 2+1-D Black Hole

    Full text link
    The properties of canonical and microcanonical ensembles of a black hole with thermal radiation and the problem of black hole evaporation in 3-D are studied. In 3-D Einstein-anti-de Sitter gravity we have two relevant mass scales, mc=1/Gm_c=1/G, and mp=(2Λ/G)1/3m_p=(\hbar^2\Lambda/G)^{1/3}, which are particularly relevant for the evaporation problem. It is argued that in the `weak coupling' regime Λ<(G)2\Lambda<(\hbar G)^{-2}, the end point of an evaporating black hole formed with an initial mass m0>mpm_0>m_p, is likely to be a stable remnant in equilibrium with thermal radiation. The relevance of these results for the information problem and for the issue of back reaction is discussed. In the `strong coupling' regime, Λ>(G)2\Lambda>(\hbar G)^{-2} a full fledged quantum gravity treatment is required. Since the total energy of thermal states in anti-de Sitter space with reflective boundary conditions at spatial infinity is bounded and conserved, the canonical and microcanonical ensembles are well defined. For a given temperature or energy black hole states are locally stable. In the weak coupling regime black hole states are more probable then pure radiation states.Comment: 11 pages, TAUP 2141/94, Late

    Aspects of classical and quantum motion on a flux cone

    Get PDF
    Motion of a non-relativistic particle on a cone with a magnetic flux running through the cone axis (a ``flux cone'') is studied. It is expressed as the motion of a particle moving on the Euclidean plane under the action of a velocity-dependent force. Probability fluid (``quantum flow'') associated with a particular stationary state is studied close to the singularity, demonstrating non trivial Aharonov-Bohm effects. For example, it is shown that near the singularity quantum flow departs from classical flow. In the context of the hydrodynamical approach to quantum mechanics, quantum potential due to the conical singularity is determined and the way it affects quantum flow is analysed. It is shown that the winding number of classical orbits plays a role in the description of the quantum flow. Connectivity of the configuration space is also discussed.Comment: LaTeX file, 21 pages, 8 figure

    Heuristic Models of Two-Fermion Relativistic Systems with Field-Type Interaction

    Get PDF
    We use the chain of simple heuristic expedients to obtain perturbative and exactly solvable relativistic spectra for a family of two-fermionic bound systems with Coulomb-like interaction. In the case of electromagnetic interaction the spectrum coincides up to the second order in a coupling constant with that following from the quantum electrodynamics. Discrepancy occurs only for S-states which is the well-known difficulty in the bound-state problem. The confinement interaction is considered too. PACS number(s): 03.65.Pm, 03.65.Ge, 12.39.PnComment: 16 pages, LaTeX 2.0
    corecore