206 research outputs found

    On the Asymptotic Stability of De-Sitter Spacetime: a non-linear perturbative approach

    Full text link
    We derive evolution and constraint equations for second order perturbations of flat dust homogeneous and isotropic solutions to the Einstein field equations using all scalar, vector and tensor perturbation modes. We show that the perturbations decay asymptotically in time and that the solutions converge to the De-Sitter solution. By induction, this result is valid for perturbations of arbitrary order. This is in agreement with the cosmic no-hair conjecture of Gibbons and Hawking.Comment: 11 pages, 2 figure

    Quantum corrections to gravity and their implications for cosmology and astrophysics

    Full text link
    The quantum contributions to the gravitational action are relatively easy to calculate in the higher derivative sector of the theory. However, the applications to the post-inflationary cosmology and astrophysics require the corrections to the Einstein-Hilbert action and to the cosmological constant, and those we can not derive yet in a consistent and safe way. At the same time, if we assume that these quantum terms are covariant and that they have relevant magnitude, their functional form can be defined up to a single free parameter, which can be defined on the phenomenological basis. It turns out that the quantum correction may lead, in principle, to surprisingly strong and interesting effects in astrophysics and cosmology.Comment: 15 pages, LaTeX, WS style, contribution to the Proceedings of the QFEXT-2011 conference in the Centro de Ciencias de Benasque Pedro Pasqual, Spai

    Quantum effects and superquintessence in the new age of precision cosmology

    Full text link
    Recent observations of Type Ia supernova at high redshifts establish that the dark energy component of the universe has (a probably constant) ratio between pressure and energy density w=p/ρ=1.02(0.19+0.13)w=p/\rho=-1.02(^{+0.13}_{-0.19}). The conventional quintessence models for dark energy are restricted to the range 1w<0-1\le w < 0, with the cosmological constant corresponding to w=1w=-1. Conformally coupled quintessence models are the simplest ones compatible with the marginally allowed superaccelerated regime (w<1w<-1). However, they are known to be plagued with anisotropic singularities. We argue here that the extension of the classical approach to the semiclassical one, with the inclusion of quantum counterterms necessary to ensure the renormalization, can eliminate the anisotropic singularities preserving the isotropic behavior of conformally coupled superquintessence models. Hence, besides of having other interesting properties, they are consistent candidates to describe the superaccelerated phases of the universe compatible with the present experimental data.Comment: 7 pages. Essay selected for "Honorable Mention" in the 2004 Awards for Essays on Gravitation, Gravity Research Foundatio

    The graceful exit from the anomaly-induced inflation: Supersymmetry as a key

    Get PDF
    The stable version of the anomaly-induced inflation does not need a fine tuning and leads to sufficient expansion of the Universe. The non-stable version (Starobinsky model) provides the graceful exit to the FRW phase. We indicate the possibility of the inflation which is stable at the beginning and unstable at the end. The effect is due to the soft supersymmetry breaking and the decoupling of the massive sparticles at low energy.Comment: 10 pages, 2 figures using axodraw. Modified version. Discussion concerning the gravitational scale modified, the effect of massive particles in the last stage of inflation taken into accoun

    Primary Invasive Aspergillosis of the Digestive Tract: Report of Two Cases and Review of the Literature

    Get PDF
    Abstract : Background: : Disseminated aspergillosis is thought to occur as a result of vascular invasion from the lungs with subsequent bloodstream dissemination, and portals of entry other than sinuses and/or the respiratory tract remain speculative. Methods: : We report two cases of primary aspergillosis in the digestive tract and present a detailed review of eight of the 23 previously-published cases for which detailed data are available. Results and Conclusion: : These ten cases presented with symptoms suggestive of typhlitis, with further peritonitis requiring laparotomy and small bowel segmental resection. All cases were characterized by the absence of pulmonary disease at the time of histologically-confirmed gastrointestinal involvement with vascular invasion by branched Aspergillus hyphae. These cases suggest that the digestive tract may represent a portal of entry for Aspergillus species in immunocompromised patient

    Tensor perturbations in high-curvature string backgrounds

    Get PDF
    We derive a generalized equation for the evolution of tensor perturbations in a cosmological background, taking into account higher-curvature contributions and a tree-level coupling to the dilaton in the string frame. The equation is obtained by perturbing the gravi-dilaton string effective action, expanded up to first order in α\alpha'. The α\alpha' corrections can modify the low-energy perturbation spectrum, but the modifications are shown to be small when the background curvature keeps constant in the string frame.Comment: 9 pages, REVTEX, three figures included using EPSFIG. An updated collection of papers on the pre-big bang scenario in string cosmology is a available at http://www.to.infn.it/teorici/gasperin

    Initial Hypersurface Formulation: Hamilton-Jacobi Theory for Strongly Coupled Gravitational Systems

    Get PDF
    Strongly coupled gravitational systems describe Einstein gravity and matter in the limit that Newton's constant G is assumed to be very large. The nonlinear evolution of these systems may be solved analytically in the classical and semiclassical limits by employing a Green function analysis. Using functional methods in a Hamilton-Jacobi setting, one may compute the generating functional (`the phase of the wavefunctional') which satisfies both the energy constraint and the momentum constraint. Previous results are extended to encompass the imposition of an arbitrary initial hypersurface. A Lagrange multiplier in the generating functional restricts the initial fields, and also allows one to formulate the energy constraint on the initial hypersurface. Classical evolution follows as a result of minimizing the generating functional with respect to the initial fields. Examples are given describing Einstein gravity interacting with either a dust field and/or a scalar field. Green functions are explicitly determined for (1) gravity, dust, a scalar field and a cosmological constant and (2) gravity and a scalar field interacting with an exponential potential. This formalism is useful in solving problems of cosmology and of gravitational collapse.Comment: 30 pages Latex (IOP) file with 2 IOP style files, to be published in Classical and Quantum Gravity (1998

    Metric Perturbations in Dilaton-Driven Inflation

    Get PDF
    We compute the spectrum of scalar and tensor metric perturbations generated, as amplified vacuum fluctuations, during an epoch of dilaton-driven inflation of the type occurring naturally in string cosmology. In the tensor case the computation is straightforward while, in the scalar case, it is made delicate by the appearance of a growing mode in the familiar longitudinal gauge. In spite of this, a reliable perturbative calculation of perturbations far outside the horizon can be performed by resorting either to appropriate gauge invariant variables, or to a new coordinate system in which the growing mode can be "gauged down". The simple outcome of this complicated analysis is that both scalar and tensor perturbations exhibit nearly Planckian spectra, whose common "temperature" is related to some very basic parameters of the string-cosmology background.Comment: 34 pages, latex, no figure

    A possible signature of cosmic neutrino decoupling in the nHz region of the spectrum of primordial gravitational waves

    Get PDF
    In this paper we study the effect of cosmic neutrino decoupling on the spectrum of cosmological gravitational waves (GWs). At temperatures T>>1 MeV, neutrinos constitute a perfect fluid and do not hinder GW propagation, while for T<<1 MeV they free-stream and have an effective viscosity that damps cosmological GWs by a constant amount. In the intermediate regime, corresponding to neutrino decoupling, the damping is frequency-dependent. GWs entering the horizon during neutrino decoupling have a frequency f ~ 1 nHz, corresponding to a frequency region that will be probed by Pulsar Timing Arrays (PTAs). In particular, we show how neutrino decoupling induces a spectral feature in the spectrum of cosmological GWs just below 1 nHz. We briefly discuss the conditions for a detection of this feature and conclude that it is unlikely to be observed by PTAs.Comment: 11 pages, 2 figures. V2: References Adde

    Nonminimal isotropic cosmological model with Yang-Mills and Higgs fields

    Full text link
    We establish a nonminimal Einstein-Yang-Mills-Higgs model, which contains six coupling parameters. First three parameters relate to the nonminimal coupling of non-Abelian gauge field and gravity field, two parameters describe the so-called derivative nonminimal coupling of scalar multiplet with gravity field, and the sixth parameter introduces the standard coupling of scalar field with Ricci scalar. The formulated six-parameter nonminimal Einstein-Yang-Mills-Higgs model is applied to cosmology. We show that there exists a unique exact cosmological solution of the de Sitter type for a special choice of the coupling parameters. The nonminimally extended Yang-Mills and Higgs equations are satisfied for arbitrary gauge and scalar fields, when the coupling parameters are specifically related to the curvature constant of the isotropic spacetime. Basing on this special exact solution we discuss the problem of a hidden anisotropy of the Yang-Mills field, and give an explicit example, when the nonminimal coupling effectively screens the anisotropy induced by the Yang-Mills field and thus restores the isotropy of the model.Comment: 15 pages, revised version accepted to Int. J. Mod. Phys. D, typos correcte
    corecore