40 research outputs found

    Alternativni modeli za složeno opuÅ”tanje niskoenergijskih pobuđenja u sustavima s valovima gustoće

    Get PDF
    We apply the Palmer, Stein, Abrahams and Anderson (PSAA) model of hierarchically constrained dynamics for glassy relaxation to the complex thermal relaxation at very low temperatures in density wave systems. Alternatively, we simulate various experimental conditions in a simple, intuitive model of an electrical RC line and find some relations with the PSAA parameters.Primjenjujemo model Palmera, Steina, Abrahamsa i Andersona (PSAA) za hijerarhijski zapriječenu dinamiku opuÅ”tanja u staklima na kompleksno opuÅ”tanje topline na vrlo niskim temperaturama u sistemima s valovima gustoće. Jednako tako, pomoću jednostavnog modela slijeda električnih RC (otpor ā€“ kapacitet) krugova oponaÅ”amo različite eksperimentalne uvjete i nalazimo neke odnose s dobivenim PSAA parametrima

    Bimodal energy relaxations in quasi-one-dimensional systems

    Full text link
    We show that the low temperature (T<0.5T<0.5 K) time dependent non-exponential energy relaxation of quasi-one-dimensional (quasi-1D) compounds strongly differ according to the nature of their modulated ground state. For incommensurate ground states, such as in (TMTSF)2_2PF6_6 the relaxation time distribution is homogeneously shifted to larger time when the duration of the heat input is increased, and exhibits in addition a scaling between the width and the position of the peak in the relaxation time distribution, w2āˆ¼lnā”(Ļ„m)w^{2}\sim\ln{(\tau_{m})}. For a commensurate ground state, as in (TMTTF)2_2PF6_6, the relaxation time spectra show a bimodal character with a weight transfer between well separated slow and fast entities. Our interpretation is based on the dynamics of defects in the modulated structure, which depend crucially on the degree of commensurability.Comment: 4 pages, 4 figure

    Charge-Density-Wave like Behavior in the One-Dimensional Charge-Ordered Semiconductor (NbSe4)3I

    Full text link
    We report on broadband dielectric spectroscopy on the one-dimensional semiconductor (NbSe4)3I. Below the structural phase transition close to 270 K we observe colossal dielectric constants with a frequency and temperature dependence very similar to what is observed in canonical charge-density wave systems. Guided by structural details we interpret this structural phase transition as driven by complex charge-order processes.Comment: 4 pages, 3 figure

    A Raman study of the Charge-Density-Wave State in A0.3_{0.3}MoO3_3 (A = K,Rb)

    Get PDF
    We report a comparative Raman spectroscopic study of the quasi-one-dimensional charge-density-wave systems \ab (A = K, Rb). The temperature and polarization dependent experiments reveal charge-coupled vibrational Raman features. The strongly temperature-dependent collective amplitudon mode in both materials differ by about 3 cm, thus revealing the role of alkali atom. We discus the observed vibrational features in terms of charge-density-wave ground state accompanied by change in the crystal symmetry. A frequency-kink in some modes seen in \bb between T = 80 K and 100 K supports the first-order lock-in transition, unlike \rb. The unusually sharp Raman lines(limited by the instrumental response) at very low temperatures and their temperature evolution suggests that the decay of the low energy phonons is strongly influenced by the presence of the temperature dependent charge density wave gap.Comment: 13 pages, 7 figure

    Fractional power-law susceptibility and specific heat in low temperature insulating state of o-TaS_{3}

    Full text link
    Measurements of the magnetic susceptibility and its anisotropy in the quasi-one-dimensional system o-TaS_{3} in its low-T charge density wave (CDW) ground state are reported. Both sets of data reveal below 40 K an extra paramagnetic contribution obeying a power-law temperature dependence \chi(T)=AT^{-0.7}. The fact that the extra term measured previously in specific heat in zero field, ascribed to low-energy CDW excitations, also follows a power law C_{LEE}(0,T)=CT^{0.3}, strongly revives the case of random exchange spin chains. Introduced impurities (0.5% Nb) only increase the amplitude C, but do not change essentially the exponent. Within the two-level system (TLS) model, we estimate from the amplitudes A and C that there is one TLS with a spin s=1/2 localized on the chain at the lattice site per cca 900 Ta atoms. We discuss the possibility that it is the charge frozen within a soliton-network below the glass transition T_{g}~40 K determined recently in this system.Comment: 7 pages, 3 figures, submitted to Europhysics Letter

    Multiferroicity in an organic charge-transfer salt: Electric-dipole-driven magnetism

    Get PDF
    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, similar to conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for this exotic type of ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.Comment: 8 pages, 9 figures (including 4 pages and 6 figures in supplementary information). Version 2 with minor errors corrected (legend of Fig. 3c and definition of vectors e and Q

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
    corecore