3,511 research outputs found

    Recent STAR results in high-energy polarized proton-proton collisions at RHIC

    Full text link
    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized p⃗+p⃗\vec{p}+\vec{p} collisions at s=200−500 \sqrt{s}=200-500\,GeV to gain a deeper insight into the spin structure and dynamics of the proton. One of the main objectives of the spin physics program at RHIC is the extraction of the polarized gluon distribution function based on measurements of gluon initiated processes, such as hadron and jet production. The STAR detector is well suited for the reconstruction of various final states involving jets, Ï€0\pi^{0}, π±\pi^{\pm}, e±^{\pm} and γ\gamma, which allows to measure several different processes. Recent results will be shown on the measurement of jet production and hadron production at s=200 \sqrt{s}=200\,GeV. The RHIC spin physics program has recently completed the first data taking period in 2009 of polarized p⃗+p⃗\vec{p}+\vec{p} collisions at s=500 \sqrt{s}=500\,GeV. This opens a new era in the study of the spin-flavor structure of the proton based on the production of W−(+)W^{-(+)} bosons. Recent STAR results on the first measurement of WW boson production in polarized p⃗+p⃗\vec{p}+\vec{p} collisions will be shown.Comment: 10 pages, 9 figures, Talk presented at the 26th Winter Workshop on Nuclear Dynamics, Ocho Rios, Jamaica, January 2-9, 2010 to be published in Journal of Physics: Conference Series (JPCS) The author may be contacted via: [email protected]

    Recent results from the STAR spin program at RHIC

    Get PDF
    The STAR experiment uses polarized p+p collisions at RHIC to determine the contributions to the spin of the proton from gluon spin and from orbital angular momentum of the quarks and gluons. Selective STAR measurements of the longitudinal double spin asymmetry for inclusive jet and inclusive hadron production are presented here. In addition, we report measurements of the transverse spin asymmetry for di-jet production at mid-rapidity and the transverse single-spin asymmetry for forward pi0 productionComment: 4 pages, 5 figures, presented at GHP06 conferenc

    Overview on jet results from STAR

    Full text link
    Full jet reconstruction allows access to the parton kinematics over a large energy domain and can be used to constrain the mechanisms of energy loss in heavy-ion collisions. Such measurements are challenging at RHIC, due to the high-multiplicity environments created in heavy-ion collisions. In these proceedings, we report an overview of the results on full jet reconstruction obtained by the STAR experiment. Jet measurements in 200 GeV p+p show that jets are calibrated pQCD probes and provide a baseline for jet measurements in Au+Au collisions. Inclusive differential jet production cross sections and ratios are reported for central 200 GeV Au+Au collisions and compared to p+p. We also present measurements of fully reconstructed di-jets at mid-rapidity, and compare spectra and fragmentation functions in p+p and central Au+Au collisions.Comment: Proceedings for the 26th WWND conferenc

    Recent high pT measurements in STAR

    Full text link
    After five years of data taking, the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory provides precise measurements of particle production at high transverse momentum in p-p, d-Au, and Au-Au collisions at sqrt(s) = 200 GeV. We review recent results on the flavor dependence of high pT particle suppression and hadron particle spectra at sqrt(s) = 62.4 GeV. New results on two-particle angular correlations for identified trigger particles and for low momentum associated charged hadrons in p-p and Au-Au as well as near-side Δη\Delta\eta correlations will be presented and discussed.Comment: 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, Calcutta. 8 pages, 10 figures, submitted to J. Phys. G: Nucl. Part. Phy

    Azimuth Quadrupole Systematics in Au-Au Collisions

    Full text link
    We have measured ptp_t-dependent two-particle number correlations on azimuth and pseudorapidity for eleven centralities of sNN=62\sqrt{s_{NN}} = 62 and 200~GeV Au-Au collisions at STAR. 2D fits to these angular correlations isolate the azimuth quadrupole amplitude, denoted 2v22{2D}(pt)2 v_2^2 \{ 2D \} ( p_t ), from localized same-side correlations. Event-plane v2(pt)v_2 ( p_t ) measurements within the STAR TPC acceptance can be expressed as a sum of the azimuth quadrupole and the quadrupole component of the same-side peak. v2{2D}(pt)v_2 \{ 2D \} ( p_t ) can be transformed to reveal quadrupole ptp_t spectra which are approximately described by a fixed transverse boost and universal L\'evy form nearly independent of centrality. A parametrization of v2{2D}(pt)v_2 \{ 2D \} ( p_t ) can be factored into centrality and ptp_t-dependent pieces with a simple ptp_t dependence above 0.75 GeV/c. Results from STAR are compared to published data and model predictions.Comment: Conference proceedings for Hot Quarks 201

    Dissipation and fragmentation of low-Q^2 scattered partons in Au-Au collisions at RHIC

    Full text link
    Two-particle correlations and event-wise fluctuations in transverse momentum p_t are reported for Au-Au collisions at sqrt{s_{NN}} = 62 and 200 GeV on pseudorapidity (eta) and azimuth (phi). Distributions of all pairs of particles (no leading trigger particle) reveal jet-like correlations, or peaks at pair-wise opening angles of order 1 radian or less. The width of this same-side correlation peak increases dramatically on pseudorapidity and decreases on azimuth for increasing collision centrality. Evolution of the same-side peak with centrality suggests dissipation of low-Q^2 partons via strong coupling to an expanding bulk medium. p_t correlations, which provide access to temperature and/or velocity distributions in the colliding system, are also presented.Comment: 4 pages, 2 figures, conference poster write-u

    Heavy ion collisions: Correlations and Fluctuations in particle production

    Full text link
    Correlations and fluctuations (the latter are directly related to the 2-particle correlations) is one of the important directions in analysis of heavy ion collisions. At the current stage of RHIC exploration, when the details matter, basically any physics question is addressed with help of correlation techniques. In this talk I start with a general introduction to the correlation and fluctuation formalism and discuss weak and strong sides of different type of observables. In more detail, I discuss the two-particle ptp_t correlations/\mpt fluctuations. In spite of not observing any dramatic changes in the event-by-event fluctuations with energy, which would indicate a possible phase transition, such correlations measurements remain an interesting and important subject, bringing valuable information. Lastly, I show how radial flow can generate characteristic azimuthal, transverse momentum and rapidity correlations, which could qualitatively explain many of recently observed phenomena in nuclear collisions.Comment: 8 pages, 8 figures. Invited talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, February 8-12, 2005, Salt Lake City, Kolkata, Indi

    Fluctuation and flow probes of early-time correlations in relativistic heavy ion collisions

    Full text link
    Fluctuation and correlation observables are often measured using multi-particle correlation methods and therefore mutually probe the origins of genuine correlations present in multi-particle distribution functions. We investigate the common influence of correlations arising from the spatially inhomogeneous initial state on multiplicity and momentum fluctuations as well as flow fluctuations. Although these observables reflect different aspects of the initial state, taken together, they can constrain a correlation scale set at the earliest moments of the collision. We calculate both the correlation scale in an initial stage Glasma flux tube picture and the modification to these correlations from later stage hydrodynamic flow and find quantitative agreement with experimental measurements over a range of collision systems and energies.Comment: Proceedings of the 28th Winter Workshop on Nuclear Dynamics, Dorado del Mar, Puerto Rico, April 7-14, 201

    Global polarization measurement in Au+Au collisions

    Full text link
    The system created in non central relativistic nucleus-nucleus collisions carries large angular orbital momentum. Due to spin-orbital coupling, produced particles could be globally polarized along the direction of the system angular momentum. We present results of a measurement of Lambda hyperon global polarization in Au+Au collisions at the center of mass energies 62 and 200 GeV with the STAR detector at RHIC. The observed global polarization of Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurement. The obtained upper limit, |P_Lambda| < 0.01, is significantly below the theoretical values discussed recently in the literature.Comment: Talk given at SQM 2006, International Conference on Strangeness in Quark Matter, March 26-31, 2006, Los Angeles CA; 4 pages, 2 figure
    • …
    corecore