5 research outputs found

    Self-similar length-displacement scaling achieved by scale-dependent growth processes: Evidence from the Atacama Fault System

    Get PDF
    The complex process of tip-propagation and growth of natural faults remains poorly understood. We analyse field structural data of strike-slip faults from the Atacama Fault System using fracture mechanics theory to depict the mechanical controls of fault growth in crystalline rocks. We calculate the displacement-length relationship of faults developed in the same rock type and tectonic regime, covering a range of five orders of magnitude, showing a linear scaling defined by dmax = 0.0337L^1.02. A multiple linear regression approach based on the cohesive end zone (CEZ) crack model was formulated to estimate the range of possible effective elastic moduli, cohesive endzone lengths, stress drops, and fracture energies from displacement distributions mapped on natural faults. Our results challenge the existent paradigm wherein the self-similarity of fault growth is only achieved under the condition of invariable stresses and elastic properties. We propose a model of self-similar fault growth with scale-dependent evolution of shear modulus, cohesive end zone length and stress drop. These results also have implications for determination of stress drop for small earthquakes that are consistent with recent advances in observational seismology

    A collective effort to identify and quantify geo-energy risks

    Get PDF
    The increasing global demand for energy and the imminent need to reduce carbon emissions in our planet has led mankind to find new solutions. Some in the energy industry have taken special interest in geothermal reservoirs, a resource with the potential to provide large amounts of renewable energy. Meanwhile, the storage of carbon dioxide in underground geological formations presents a fantastic opportunity to discard CO2 and mitigate global warming. This study links efforts from academic institutions, industry energy operators, industrial partners and research institutes to answer fundamental scientific questions that can help us understand the subsurface and generate better exploitation practices. We examine the geology of reservoirs used for geothermal energy extraction and carbon dioxide capture. We use a combination of field geology, photogrammetry, mineral analysis and experimental rock mechanics to understand fracture networks and fluid flow paths of two geologically diverse reservoirs in Europe: 1) the Hengill geothermal system in south-west Iceland, and 2) the Carnmenellis granite geothermal system in Cornwall (UK). These results aim to provide experimental data to refine numerical models predicting fluid flow and contribute to the quantification of the associated risks of exploiting the subsurface

    Reactivation of Fault Systems by Compartmentalized Hydrothermal Fluids in the Southern Andes Revealed by Magnetotelluric and Seismic Data

    Get PDF
    In active volcanic arcs such as the Andean volcanic mountain belt, magmatically‐sourced fluids are channelled through the brittle crust by faults and fracture networks. In the Andes, volcanoes, geothermal springs and major mineral deposits have a spatial and genetic relationship with NNE‐trending, margin‐parallel faults and margin‐oblique, NW‐trending Andean Transverse Faults (ATF). The Tinguiririca and Planchón‐Peteroa volcanoes in the Andean Southern Volcanic Zone (SVZ) demonstrate this relationship, as their spatially associated thermal springs show strike alignment to the NNE‐oriented El Fierro Thrust Fault System. We constrain the fault system architecture and its interaction with volcanically sourced hydrothermal fluids using a combined magnetotelluric (MT) and seismic survey that was deployed for 20 months. High conductivity zones are located along the axis of the active volcanic chain, delineating fluids and/or melt. A distinct WNW‐trending cluster of seismicity correlates with resistivity contrasts, considered to be a reactivated ATF. Seismicity occurs below 4 km, suggesting activity is limited to basement rocks, and the cessation of seismicity at 9 km delineates the local brittle‐ductile transition. As seismicity is not seen west of the El Fierro fault, we hypothesize that this structure plays a key role in compartmentalizing magmatically‐derived hydrothermal fluids to the east, where the fault zone acts as a barrier to cross‐fault fluid migration and channels fault‐parallel fluid flow to the surface from depth. Increases in fluid pressure above hydrostatic may facilitate reactivation. This site‐specific case study provides the first three‐dimensional seismic and magnetotelluric observations of the mechanics behind the reactivation of an ATF

    Characterizing fluid flow paths in the Hellisheidi geothermal field using detailed fault mapping and stress-dependent permeability

    No full text
    The Husmuli zone of the SW-Iceland Hellisheidi geothermal field is currently being used for re-injection of geothermal fluids and geothermal CO2 for its permanent storage in the form of carbonate minerals. A fully coupled hydro-thermo-mechanical numerical model was employed to investigate the coupled impacts of these complex processes on the calibration of fluid flow paths, which can have significant implications for the long-term performance of this subsurface reservoir. Employing a combination of high-resolution fault mapping with laboratory measurements of stress dependent permeability coupled into a dual porosity field-scale model, the flow paths were calibrated using results of tracer tests performed at the site using stress-dependent permeability tensors. Although vertically extended faults are the primary fluid flow paths, fractures connecting the faults can play an important role in fluid transport. As the upward flow streamlines manifest, deep geological layers can also deviate the fluid flow towards the shallower layers provoking the vertical flow of geothermal fluids. This highlights the sweet spot for sustainable flow and heat extraction in vicinity of faults intercepting the geological layers at depth of 1100 m. It was also shown that the inclusion of the geomechanical calculations in the history matching of the tracer test could lead to changes in arrival time and peak of the tracer profiles. Results of an independent tracer test were used to validate the model and to demonstrate the predictive capability of the calibrated model. This verifies the consistency of our methodology to incorporate the stress-dependent permeability. The results of this comprehensive modelling study provide insight into the likely fluid flow paths, which can have profound impact on the evaluation of various processes such as CO2 mineralisation taking place in Hellisheidi geothermal reservoir

    Reactivation of fault systems by compartmentalized hydrothermal fluids in the Southern Andes revealed by magnetotelluric and seismic data

    Get PDF
    In active volcanic arcs such as the Andean volcanic mountain belt, magmatically‐sourced fluids are channelled through the brittle crust by faults and fracture networks. In the Andes, volcanoes, geothermal springs and major mineral deposits have a spatial and genetic relationship with NNE‐trending, margin‐parallel faults and margin‐oblique, NW‐trending Andean Transverse Faults (ATF). The Tinguiririca and Planchón‐Peteroa volcanoes in the Andean Southern Volcanic Zone (SVZ) demonstrate this relationship, as their spatially associated thermal springs show strike alignment to the NNE‐oriented El Fierro Thrust Fault System. We constrain the fault system architecture and its interaction with volcanically sourced hydrothermal fluids using a combined magnetotelluric (MT) and seismic survey that was deployed for 20 months. High conductivity zones are located along the axis of the active volcanic chain, delineating fluids and/or melt. A distinct WNW‐trending cluster of seismicity correlates with resistivity contrasts, considered to be a reactivated ATF. Seismicity occurs below 4 km, suggesting activity is limited to basement rocks, and the cessation of seismicity at 9 km delineates the local brittle‐ductile transition. As seismicity is not seen west of the El Fierro fault, we hypothesize that this structure plays a key role in compartmentalizing magmatically‐derived hydrothermal fluids to the east, where the fault zone acts as a barrier to cross‐fault fluid migration and channels fault‐parallel fluid flow to the surface from depth. Increases in fluid pressure above hydrostatic may facilitate reactivation. This site‐specific case study provides the first three‐dimensional seismic and magnetotelluric observations of the mechanics behind the reactivation of an ATF
    corecore