36 research outputs found

    Single Bead Affinity Detection (SINBAD) for the Analysis of Protein-Protein Interactions

    Get PDF
    We present a miniaturized pull-down method for the detection of protein-protein interactions using standard affinity chromatography reagents. Binding events between different proteins, which are color-coded with quantum dots (QDs), are visualized on single affinity chromatography beads by fluorescence microscopy. The use of QDs for single molecule detection allows the simultaneous analysis of multiple protein-protein binding events and reduces the amount of time and material needed to perform a pull-down experiment

    The Telomere Binding Protein TRF2 Induces Chromatin Compaction

    Get PDF
    Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures

    Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence

    No full text
    The telomere-capping complex (shelterin) protects functional telomeres from initiating unwanted DNA damage response. Uncapped telomeres at the end of cellular replicative lifespan lose this protective mechanism and trigger DNA damage signaling to activate p53 and thereby induce replicative senescence. Here we identify a signaling pathway involving p53, Siah-1, a p53-inducible E3 ubiquitin ligase, and TRF2, a component of the shelterin complex. Endogenous Siah-1 and TRF2 were up- and down-regulated, respectively, at replicative senescence with activated p53. A series of experimental manipulations of p53 showed that p53 induced Siah-1 and repressed TRF2 protein levels. The p53-dependent ubiquitination and proteasomal degradation of TRF2 were attributed to the E3 ligase activity of Siah-1. Siah-1 knockdown stabilized TRF2 and delayed the onset of cellular replicative senescence, suggesting the role of Siah-1 and TRF2 in p53-regulated senescence. This study reveals that p53, a downstream effector of the telomere-initiated damage signaling, also functions upstream of the shelterin complex
    corecore