226 research outputs found

    Hepatocellular Carcinoma Arising in Non-Cirrhotic Haemochromatosis

    Get PDF
    Hepatocellular carcinoma arising in a patient with genetic haemachromatosis, without cirrhosis, has only been described once previously. We present a patient with a 15 year history of genetic haemachromatosis who underwent resection of a hepatocellular carcinoma in a liver with normal architecture

    Measurement of Liver Blood Flow: A Review

    Get PDF
    The study of hepatic haemodynamics is of importance in understanding both hepatic physiology and disease processes as well as assessing the effects of portosystemic shunting and liver transplantation. The liver has the most complicated circulation of any organ and many physiological and pathological processes can affect it1,2. This review surveys the methods available for assessing liver blood flow, examines the different parameters being measured and outlines problems of applicability and interpretation for each technique

    The Commensal Real-time ASKAP Fast Transients (CRAFT) survey

    Get PDF
    We are developing a purely commensal survey experiment for fast (<5s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission, extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.Comment: accepted for publication in PAS

    DualSPHysics: from fluid dynamics to multiphysics problems

    Get PDF
    DualSPHysics is a weakly compressible smoothed particle hydrodynamics (SPH) Navier–Stokes solver initially conceived to deal with coastal engineering problems, especially those related to wave impact with coastal structures. Since the first release back in 2011, DualSPHysics has shown to be robust and accurate for simulating extreme wave events along with a continuous improvement in efficiency thanks to the exploitation of hardware such as graphics processing units for scientific computing or the coupling with wave propagating models such as SWASH and OceanWave3D. Numerous additional functionalities have also been included in the DualSPHysics package over the last few years which allow the simulation of fluid-driven objects. The use of the discrete element method has allowed the solver to simulate the interaction among different bodies (sliding rocks, for example), which provides a unique tool to analyse debris flows. In addition, the recent coupling with other solvers like Project Chrono or MoorDyn has been a milestone in the development of the solver. Project Chrono allows the simulation of articulated structures with joints, hinges, sliders and springs and MoorDyn allows simulating moored structures. Both functionalities make DualSPHysics especially suited for the simulation of offshore energy harvesting devices. Lately, the present state of maturity of the solver goes beyond single-phase simulations, allowing multi-phase simulations with gas–liquid and a combination of Newtonian and non-Newtonian models expanding further the capabilities and range of applications for the DualSPHysics solver. These advances and functionalities make DualSPHysics an advanced meshless solver with emphasis on free-surface flow modelling

    The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package

    Get PDF
    The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project
    • …
    corecore