226 research outputs found
2-D numerical modeling of rapidly varying shallow water flows by Smoothed Particle Hydrodynamics technique
River engineeringNumerical modelling in river engineerin
Hepatocellular Carcinoma Arising in Non-Cirrhotic Haemochromatosis
Hepatocellular carcinoma arising in a patient with genetic haemachromatosis, without cirrhosis, has
only been described once previously. We present a patient with a 15 year history of genetic
haemachromatosis who underwent resection of a hepatocellular carcinoma in a liver with normal
architecture
Measurement of Liver Blood Flow: A Review
The study of hepatic haemodynamics is of importance in understanding both hepatic physiology and
disease processes as well as assessing the effects of portosystemic shunting and liver transplantation. The
liver has the most complicated circulation of any organ and many physiological and pathological
processes can affect it1,2. This review surveys the methods available for assessing liver blood flow,
examines the different parameters being measured and outlines problems of applicability and interpretation
for each technique
The Commensal Real-time ASKAP Fast Transients (CRAFT) survey
We are developing a purely commensal survey experiment for fast (<5s)
transient radio sources. Short-timescale transients are associated with the
most energetic and brightest single events in the Universe. Our objective is to
cover the enormous volume of transients parameter space made available by
ASKAP, with an unprecedented combination of sensitivity and field of view. Fast
timescale transients open new vistas on the physics of high brightness
temperature emission, extreme states of matter and the physics of strong
gravitational fields. In addition, the detection of extragalactic objects
affords us an entirely new and extremely sensitive probe on the huge reservoir
of baryons present in the IGM. We outline here our approach to the considerable
challenge involved in detecting fast transients, particularly the development
of hardware fast enough to dedisperse and search the ASKAP data stream at or
near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of
the key technologies and survey modes proposed for high time resolution science
with the SKA.Comment: accepted for publication in PAS
DualSPHysics: from fluid dynamics to multiphysics problems
DualSPHysics is a weakly compressible smoothed particle hydrodynamics (SPH) Navier–Stokes solver initially conceived to deal with coastal engineering problems, especially those related to wave impact with coastal structures. Since the first release back in 2011, DualSPHysics has shown to be robust and accurate for simulating extreme wave events along with a continuous improvement in efficiency thanks to the exploitation of hardware such as graphics processing units for scientific computing or the coupling with wave propagating models such as SWASH and OceanWave3D. Numerous additional functionalities have also been included in the DualSPHysics package over the last few years which allow the simulation of fluid-driven objects. The use of the discrete element method has allowed the solver to simulate the interaction among different bodies (sliding rocks, for example), which provides a unique tool to analyse debris flows. In addition, the recent coupling with other solvers like Project Chrono or MoorDyn has been a milestone in the development of the solver. Project Chrono allows the simulation of articulated structures with joints, hinges, sliders and springs and MoorDyn allows simulating moored structures. Both functionalities make DualSPHysics especially suited for the simulation of offshore energy harvesting devices. Lately, the present state of maturity of the solver goes beyond single-phase simulations, allowing multi-phase simulations with gas–liquid and a combination of Newtonian and non-Newtonian models expanding further the capabilities and range of applications for the DualSPHysics solver. These advances and functionalities make DualSPHysics an advanced meshless solver with emphasis on free-surface flow modelling
The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package
The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project
- …