42 research outputs found

    Normal histone modifications on the inactive X chromosome in ICF and Rett syndrome cells: implications for methyl-CpG binding proteins

    Get PDF
    BACKGROUND: In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function. RESULTS: We show here that the inactive X in ICF cells, which appears to be hypomethylated at all CpG islands, exhibits normal histone modification patterns. In addition, in Rett cells with no functional MeCP2 methyl-CpG binding protein, the inactive X also exhibits normal histone modification patterns. CONCLUSIONS: These data suggest that DNA methylation and the associated methyl-DNA binding proteins may not play a critical role in determining histone modification patterns on the mammalian inactive X chromosome at the sites analyzed

    Dosage Regulation of the Active X Chromosome in Human Triploid Cells

    Get PDF
    In mammals, dosage compensation is achieved by doubling expression of X-linked genes in both sexes, together with X inactivation in females. Up-regulation of the active X chromosome may be controlled by DNA sequence–based and/or epigenetic mechanisms that double the X output potentially in response to autosomal factor(s). To determine whether X expression is adjusted depending on ploidy, we used expression arrays to compare X-linked and autosomal gene expression in human triploid cells. While the average X:autosome expression ratio was about 1 in normal diploid cells, this ratio was lower (0.81–0.84) in triploid cells with one active X and higher (1.32–1.4) in triploid cells with two active X's. Thus, overall X-linked gene expression in triploid cells does not strictly respond to an autosomal factor, nor is it adjusted to achieve a perfect balance. The unbalanced X:autosome expression ratios that we observed could contribute to the abnormal phenotypes associated with triploidy. Absolute autosomal expression levels per gene copy were similar in triploid versus diploid cells, indicating no apparent global effect on autosomal expression. In triploid cells with two active X's our data support a basic doubling of X-linked gene expression. However, in triploid cells with a single active X, X-linked gene expression is adjusted upward presumably by an epigenetic mechanism that senses the ratio between the number of active X chromosomes and autosomal sets. Such a mechanism may act on a subset of genes whose expression dosage in relation to autosomal expression may be critical. Indeed, we found that there was a range of individual X-linked gene expression in relation to ploidy and that a small subset (∼7%) of genes had expression levels apparently proportional to the number of autosomal sets

    Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Get PDF
    BACKGROUND: X chromosome inactivation (XCI) is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi) in normal female cells, leaving them with a single active X (Xa) as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1) that normal development requires a ratio of one Xa per diploid autosomal set, and 2) that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. RESULTS: Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. CONCLUSION: The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio
    corecore