253 research outputs found
Adaptive multigrid domain decomposition solutions for viscous interacting flows
Several viscous incompressible flows with strong pressure interaction and/or axial flow reversal are considered with an adaptive multigrid domain decomposition procedure. Specific examples include the triple deck structure surrounding the trailing edge of a flat plate, the flow recirculation in a trough geometry, and the flow in a rearward facing step channel. For the latter case, there are multiple recirculation zones, of different character, for laminar and turbulent flow conditions. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable, non-staggered grid computation
Numerical Procedures for Inlet/Diffuser/Nozzle Flows
Two primitive variable, pressure based, flux-split, RNS/NS solution procedures for viscous flows are presented. Both methods are uniformly valid across the full Mach number range, Le., from the incompressible limit to high supersonic speeds. The first method is an 'optimized' version of a previously developed global pressure relaxation RNS procedure. Considerable reduction in the number of relatively expensive matrix inversion, and thereby in the computational time, has been achieved with this procedure. CPU times are reduced by a factor of 15 for predominantly elliptic flows (incompressible and low subsonic). The second method is a time-marching, 'linearized' convection RNS/NS procedure. The key to the efficiency of this procedure is the reduction to a single LU inversion at the inflow cross-plane. The remainder of the algorithm simply requires back-substitution with this LU and the corresponding residual vector at any cross-plane location. This method is not time-consistent, but has a convective-type CFL stability limitation. Both formulations are robust and provide accurate solutions for a variety of internal viscous flows to be provided herein
RNS Applications for Interacting Sub- and Supersonic Flows
A solution based grid adaptation method that combines elements of the multigrid method for solution acceleration and the domain decomposition philosophy for grid optimization is described. Unlike other solution based adaptive gridding schemes, wherein the overhead of recomputing the grid and re-evaluating the solution on the adapted grid leads to higher computational costs compared to a non-adapted calculation, the present methodology reduces the computational time required to obtain the solution. The computational effort involved in the present calculation is significantly lower than a non-adapted calculation that utilizes the multigrid method purely as a convergence acceleration tool. In addition to convergence acceleration, the multigrid framework provides a mechanism of information transfer from regions wherein grid refinement is specified to unrefined coarse grid regions. The basis for domain decomposition in the current procedure is the variation in grid refinement requirements for each coordinate direction in different portions of the flow field. The method is demonstrated herein on an efficient set of governing equations termed the reduced Navier Stokes equations, applied in conjunction with a set of physical boundary conditions. The governing equations are discretized through a pressure based flux splitting procedure that is uniformly applicable from incompressible to supersonic Mach numbers
\u27Loosening the Emotional Knot \u27: A Conversation with Carolyn Forche
Poets Harriet Susskind and Stan Sanvel Rubin, speak with poet Carolyn Forche during a Writers Forum interview at the State University of New York College at Brockport on November 3, 1982. This interview was edited by Earl Ingersoll and Stan Sanvel Rubin
Resistance and Resistance Fluctuations in Random Resistor Networks Under Biased Percolation
We consider a two-dimensional random resistor network (RRN) in the presence
of two competing biased percolations consisting of the breaking and recovering
of elementary resistors. These two processes are driven by the joint effects of
an electrical bias and of the heat exchange with a thermal bath. The electrical
bias is set up by applying a constant voltage or, alternatively, a constant
current. Monte Carlo simulations are performed to analyze the network evolution
in the full range of bias values. Depending on the bias strength, electrical
failure or steady state are achieved. Here we investigate the steady-state of
the RRN focusing on the properties of the non-Ohmic regime. In constant voltage
conditions, a scaling relation is found between and , where
is the average network resistance, the linear regime resistance
and the threshold value for the onset of nonlinearity. A similar relation
is found in constant current conditions. The relative variance of resistance
fluctuations also exhibits a strong nonlinearity whose properties are
investigated. The power spectral density of resistance fluctuations presents a
Lorentzian spectrum and the amplitude of fluctuations shows a significant
non-Gaussian behavior in the pre-breakdown region. These results compare well
with electrical breakdown measurements in thin films of composites and of other
conducting materials.Comment: 15 figures, 23 page
Dark sectors 2016 Workshop: community report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years
On the Functional Significance of the P1 and N1 Effects to Illusory Figures in the Notch Mode of Presentation
The processing of Kanizsa figures have classically been studied by flashing the full “pacmen” inducers at stimulus onset. A recent study, however, has shown that it is advantageous to present illusory figures in the “notch” mode of presentation, that is by leaving the round inducers on screen at all times and by removing the inward-oriented notches delineating the illusory figure at stimulus onset. Indeed, using the notch mode of presentation, novel P1and N1 effects have been found when comparing visual potentials (VEPs) evoked by an illusory figure and the VEPs to a control figure whose onset corresponds to the removal of outward-oriented notches, which prevents their integration into one delineated form. In Experiment 1, we replicated these findings, the illusory figure was found to evoke a larger P1 and a smaller N1 than its control. In Experiment 2, real grey squares were placed over the notches so that one condition, that with inward-oriented notches, shows a large central grey square and the other condition, that with outward-oriented notches, shows four unconnected smaller grey squares. In response to these “real” figures, no P1 effect was found but a N1 effect comparable to the one obtained with illusory figures was observed. Taken together, these results suggest that the P1 effect observed with illusory figures is likely specific to the processing of the illusory features of the figures. Conversely, the fact that the N1 effect was also obtained with real figures indicates that this effect may be due to more global processes related to depth segmentation or surface/object perception
Atg5-Independent Sequestration of Ubiquitinated Mycobacteria
Like several other intracellular pathogens, Mycobacterium marinum (Mm) escapes from phagosomes into the host cytosol where it can polymerize actin, leading to motility that promotes spread to neighboring cells. However, only ∼25% of internalized Mm form actin tails, and the fate of the remaining bacteria has been unknown. Here we show that cytosolic access results in a new and intricate host pathogen interaction: host macrophages ubiquitinate Mm, while Mm shed their ubiquitinated cell walls. Phagosomal escape and ubiquitination of Mm occured rapidly, prior to 3.5 hours post infection; at the same time, ubiquitinated Mm cell wall material mixed with host-derived dense membrane networks appeared in close proximity to cytosolic bacteria, suggesting cell wall shedding and association with remnants of the lysed phagosome. At 24 hours post-infection, Mm that polymerized actin were not ubiquitinated, whereas ubiquitinated Mm were found within LAMP-1–positive vacuoles resembling lysosomes. Though double membranes were observed which sequestered Mm away from the cytosol, targeting of Mm to the LAMP-1–positive vacuoles was independent of classical autophagy, as demonstrated by absence of LC3 association and by Atg5-independence of their formation. Further, ubiquitination and LAMP-1 association did not occur with mutant avirulent Mm lacking ESX-1 (type VII) secretion, which fail to escape the primary phagosome; apart from its function in phagosome escape, ESX-1 was not directly required for Mm ubiquitination in macrophages or in vitro. These data suggest that virulent Mm follow two distinct paths in the cytosol of infected host cells: bacterial ubiquitination is followed by sequestration into lysosome-like organelles via an autophagy-independent pathway, while cell wall shedding may allow escape from this fate to permit continued residence in the cytosol and formation of actin tails
Systematic Genetic Nomenclature for Type VII Secretion Systems
CITATION: Bitter, W., et al. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathogens, 5(10): 1-6, doi: 10.1371/journal.ppat.1000507.The original publication is available at http://journals.plos.org/plospathogensMycobacteria, such as the etiological
agent of human tuberculosis, Mycobacterium
tuberculosis, are protected by an impermeable
cell envelope composed of an inner
cytoplasmic membrane, a peptidoglycan
layer, an arabinogalactan layer, and an
outer membrane. This second membrane
consists of covalently linked, tightly packed
long-chain mycolic acids [1,2] and noncovalently
bound shorter lipids involved in
pathogenicity [3–5]. To ensure protein
transport across this complex cell envelope,
mycobacteria use various secretion pathways,
such as the SecA1-mediated general
secretory pathway [6,7], an alternative
SecA2-operated pathway [8], a twin-arginine
translocation system [9,10], and a
specialized secretion pathway variously
named ESAT-6-, SNM-, ESX-, or type
VII secretion [11–16]. The latter pathway,
hereafter referred to as type VII secretion
(T7S), has recently become a large and
competitive research topic that is closely
linked to studies of host–pathogen interactions
of M. tuberculosis [17] and other
pathogenic mycobacteria [16]. Molecular
details are just beginning to be revealed
[18–22] showing that T7S systems are
complex machineries with multiple components
and multiple substrates. Despite
their biological importance, there has been
a lack of a clear naming policy for the
components and substrates of these systems.
As there are multiple paralogous T7S
systems within the Mycobacteria and
orthologous systems in related bacteria,
we are concerned that, without a unified
nomenclature system, a multitude of redundant
and obscure gene names will be
used that will inevitably lead to confusion
and hinder future progress. In this opinion
piece we will therefore propose and introduce
a systematic nomenclature with
guidelines for name selection of new
components that will greatly facilitate
communication and understanding in this
rapidly developing field of research.http://journals.plos.org/plospathogens/article?id=10.1371%2Fjournal.ppat.1000507Publisher's versio
- …