22 research outputs found

    A cyclic-AMP-gated conductance in cochlear hair cells

    Get PDF
    AbstractThe patch clamp technique was used to record cAMP-dependent currents of the guinea pig cochlear hair cell plasma membrane. Data obtained indicate that the channels passing this current are moderately selective for monovalent cations and are effectively blocked by L-cis-diltiazem and reversibly blocked by 1 mM Mg2+ or Ca2+. The single-channel unit conductance estimated in the absence of divalent cations is about 16 pS. The results demonstrate that cyclic nucleotide-dependent channels of cochlear hair cells are virtually identical to the photoreceptor and olfactory ones

    Calcium Signaling Initiated by Agonists in Mesenchymal Stromal Cells from the Human Adipose Tissue

    Get PDF
    Mesenchymal stromal cells (MSCs) from different sources represent a heterogeneous population of proliferating non-differentiated cells that contain multipotent stem cells capable of originating a variety of mesenchymal cell lineages. By using Ca2+ imaging and the Ca2+ dye Fluo-4, we studied MSCs from the human adipose tissue and examined Ca2+ signaling initiated by a variety of GPCR ligands, focusing primarily on adrenergic and purinergic agonists. Being characterized by a relative change of Fluo-4 fluorescence, agonist-induced Ca2+ responses were generated in an “all-or-nothing” fashion. Specifically, at relatively low doses, agonists elicited undetectable responses but initiated quite similar Ca2+ transients at all concentrations above the threshold. The inhibitory analysis and Ca2+/IP3 uncaging pointed at the phosphoinositide cascade as a pivotal pathway responsible for agonist transduction and implicated Ca2+-induced Ca2+ release (CICR) in shaping agonists-dependent Ca2+ signals. Altogether, our data suggest that agonist transduction in MSCs includes two fundamentally different stages: an agonist initially triggers a local, gradual, and relatively small Ca2+ signal, which next stimulates CICR to accomplish transduction with a large and global Ca2+ transient. By involving the trigger-like mechanism CICR, a cell is capable of generating Ca2+ responses of virtually universal shape and magnitude at different agonist concentrations above the threshold

    Intermolecular interactions-photophysical properties relationships in phenanthrene-9,10-dicarbonitrile assemblies

    Get PDF
    Phenanthrene-9,10-dicarbonitriles show various luminescence behaviour in solution and in the solid state. Aggregation patterns of phenanthrene-9,10-dicarbonitriles govern their luminescent properties in the solid state. Single crystal structures of phenanthrene-9,10-dicarbonitriles showed head-to-tail intraplane (or quasi-intraplane) intermolecular interactions and π-stacking patterns with eclipsing of molecules when viewed orthogonal to the stacking plane. The π-stacking interactions were detected in the X-ray structures of phenanthrene-9,10-dicarbonitriles and studied by DFT calculations at the M06–2X/6–311++G(d,p) level of theory and topological analysis of the electron density distribution within the framework of QTAIM method. The estimated strength of the C⋯C contacts responsible for the π-stacking interactions is 0.6–1.1 kcal/mol. The orientation of molecules in crystals depends on the substituents in phenanthrene-9,10-dicarbonitriles. Distinct molecular orientation and packing arrangements in crystalline phenanthrene-9,10-dicarbonitriles ensured perturbed electronic communication among the nearest and non-nearest molecules through an interplay of excimer and dipole couplings. As a result, the intermolecular interactions govern the solid state luminescence of molecules

    Structural data of phenanthrene-9,10-dicarbonitriles

    Get PDF
    In this data article, we present the single-crystal XRD data of phenanthrene-9,10-dicarbonitriles. Detailed structure analysis and photophysical properties were discussed in our previous study, "Intermolecular interactions-photophysical properties relationships in phenanthrene-9,10-dicarbonitrile assemblies" (Afanasenko et al., 2020). The data include the intra- and intermolecular bond lengths and angles. (c) 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca<sup>2+</sup> in the Extracellular Medium

    No full text
    Type III taste cells are the only taste bud cells which express voltage-gated (VG) Ca2+ channels and employ Ca2+-dependent exocytosis to release neurotransmitters, particularly serotonin. The taste bud is a tightly packed cell population, wherein extracellular Ca2+ is expected to fluctuate markedly due to the electrical activity of taste cells. It is currently unclear whether the Ca2+ entry-driven synapse in type III cells could be reliable enough at unsteady extracellular Ca2. Here we assayed depolarization-induced Ca2+ signals and associated serotonin release in isolated type III cells at varied extracellular Ca2+. It turned out that the same depolarizing stimulus elicited invariant Ca2+ signals in type III cells irrespective of bath Ca2+ varied within 0.5–5 mM. The serotonin release from type III cells was assayed with the biosensor approach by using HEK-293 cells co-expressing the recombinant 5-HT4 receptor and genetically encoded cAMP sensor Pink Flamindo. Consistently with the weak Ca2+ dependence of intracellular Ca2+ transients produced by VG Ca2+ entry, depolarization-triggered serotonin secretion varied negligibly with bath Ca2+. The evidence implicated the extracellular Ca2+-sensing receptor in mediating the negative feedback mechanism that regulates VG Ca2+ entry and levels off serotonin release in type III cells at deviating Ca2+ in the extracellular medium
    corecore