4 research outputs found

    Effect of Radial-Shear Rolling on the Structure and Hardening of an Al–8%Zn–3.3%Mg–0.8%Ca–1.1%Fe Alloy Manufactured by Electromagnetic Casting

    No full text
    Aluminum alloys are one of the most common structural materials. To improve the mechanical properties, an alloy of the Al–Zn–Mg–Ca–Fe system was proposed. In this alloy, when Fe and Ca are added, compact particles of the Al10CaFe2 compound are formed, which significantly reduces the negative effect of Fe on the mechanical properties. Because of the high solidification rate (about 600 K/s) during cylindrical ingot (~33 mm) production, the electromagnetic casting method (ECM) makes it possible to obtain a highly dispersed structure in the cast state. The size of the dendritic cell is ~7 μm, while the entire amount of Fe is bound into eutectic inclusions of the Al10CaFe2 phase with an average size of less than 3 μm. In this study, the effect of radial shear rolling (RSR) on the formation of the structure and hardening of the Al–8%Zn–3.3%Mg–0.8%Ca–1.1%Fe alloy obtained by EMC was studied. Computer simulation of the RSR process made it possible to analyze the temperature and stress–strain state of the alloy and to select the optimal rolling modes. It was shown that the flow features during RSR and the severe shear strains near the surface of the rod (10 mm) provided a refining and decrease in the size of the initial Fe-containing particles

    The Characterization of Coatings Formed on As-Cast Al, Al–Si, and Al–Ca Aluminum Substrates by Plasma Electrolytic Oxidation

    No full text
    In this study, ceramic coatings were grown on the surface of as-cast aluminum alloys via plasma electrolytic oxidation (PEO). The effect of the Si- and Ca-alloying elements in aluminum on the growth process, morphology, composition, mechanical, and corrosion properties of the PEO coatings was investigated. Uniform coatings with a minimum number of defects were formed on the surfaces of Al–Ca alloys. Increasing the Si content in Al led to an increase in the bulk and surface porosity of the coatings. The α-Al2O3 phase mainly formed in the coatings synthesized on pure Al and Al–Ca alloys, while an increased amount of Si in Al alloys hindered the formation of the α-Al2O3 phase. The coatings had a microhardness of 660–1180 HV, which was 20–30 times higher than that of the original as-cast alloy. Moreover, the coating on the Al–Ca alloys had the highest peak hardness, which was probably caused by the formation of a greater amount of the α-Al2O3 phase. Electrochemical studies in 3.5% NaCl have shown that PEO coatings reduce the corrosion current density. Of all PEO-treated alloys, Al and Al1Ca have the lowest corrosion current density and hence the highest corrosion resistance due to the composition and uniformity of the coating
    corecore