8 research outputs found

    The use of correlation and regression analysis for assessment of the energy effectiveness of the dc electric locomotives auxiliary equipment

    No full text
    Through additional processing of the modern movement parameter recorders data of the DC electric locomotive 2ES6 the article first presents the results of the actual consumption of electricity for own needs and the proportion of these costs from the consumption of trains traction is determined, which in terms of operational depot is difficult to implement. The estimation of influencing factors on the energy consumption for own needs of 2ES6 series electric locomotives is made. As a result it was found that the internal energy consumption is influenced by such factors as rolling stock mass, axle load and environment temperature. Statistic models were made to normalize internal electricity consumption and their quality estimation was fulfilled. It is found that the remainders of the multiple regression equation, which take the above factors into account, obey the normal distribution law, indicating the adequacy of their further use to assess the energy efficiency of the 2ES6 series DC electric locomotives auxiliary equipment. The use of regression models will allow to identify electric locomotives with auxiliary equipment with low energy efficiency and to send them to unscheduled repairs in time to restore the required technical condition

    Simulation model of the heating and air conditioning system of dc electric trains

    No full text
    Most of the territory of the Russian Federation is located in the zone of long-term exposure to negative ambient temperatures. In this regard, in the suburban traffic on the railways of the Russian Federation, a significant proportion of the electric power falls on the operation of heating and air conditioning systems. Nowadays, Russia and the world are developing energy-saving methods and tools to reduce the energy consumption of auxiliary needs of electric trains. In this paper, the method of constructing simulation models in the MATLAB Simulink software was used to build an energy-saving heating and air conditioning system, since this method allows studying various options for building the studied systems with lower financial and labor costs in comparison with the experimental method. The correct selection and display of the parameters of the electric train interior will allow achieving the optimal values of energy consumption for heating and air conditioning of the electric trains. In order to verify its adequacy, the simulation model includes standard values of electric energy consumption for heating and conditioning electric trains for various sections and operating conditions, which were obtained earlier during the correlation and regression analysis of data from electric train parameter recorders. The results of the study showed the adequacy of the application of the developed simulation model for organizing the control of electric power consumption for heating and air conditioning of DC electric trains

    Development of a simulation model for controlling energy storage systems on electric trains

    No full text
    The article discusses the experience of using electrical energy storage devices on multiple unit rolling stock, both in Russia and abroad. It is noted that the use of energy storage systems in railway transport in Russia lags somewhat behind its foreign colleagues. The main assumptions taken when performing simulation modeling of the operation of energy storage systems on an electric train are presented. Simulations of the operation of energy storage systems were carried out using the MatLab software package. Simulation models of an electric train with an energy storage device, a model of a heater for heating an electric train car, a model of a hybrid energy storage system, a model of a supercapacitor unit, and batteries are presented. The algorithm of operation of the active topology of a hybrid drive is considered. The developed simulation models have been tested. Graphs of the voltage at the pantograph and the current consumed by the electric train were obtained, as well as graphs of the operation of the battery and supercapacitor in charge/discharge modes

    Development of the system of visual control of electric power consumption by electric rolling stock

    No full text
    The paper considers the issue of organization of control of electric power consumption by electric rolling stock by visualizing information on the monitor of the driver's console. With the correct analysis of information coming on board of the electric rolling stock, the train driver makes correction of the driving modes of the train in terms of energy efficiency. In this paper, to visualize information on the efficiency of power consumption by an electric rolling stock on the route, the authors propose using an indicator diagram using a green, white, and orange gradient. The variant of output of the final information on the efficiency of power consumption of electrical energy by an electric rolling stock both within the distances operated by the locomotive crews and within the hauls to the monitor of the driver's console is presented. One of the main advantages of using the technology of visual control of electric power consumption by electric rolling stock is the promptness of correction of decision-making on the rational use of energy resources, the identification of objective reasons for the overspending of energy, and the identification of reference results for the driving of trains. The prospect of development of the research topic is the approbation and implementation of the proposed technical and technological solutions in the production, which will reduce the specific consumption and unproductive electric power losses within the boundaries of the railway accounting zones

    Artificial intelligence methods to control the energy efficiency of electric rolling stock online

    No full text
    The international practices in organizing the energy consumption control of electric rolling stock are analyzed. As a result, it was concluded that currently the issue of organizing the energy consumption control of electric rolling stock is mainly solved by using analytical methods. These methods are based on designing the simulation models, which are usually based on the Pontryagin maximum principle. However, considering the development of recording systems for motion parameters of electric rolling stock, as well as other automated systems of Russian Railways, it seems promising to develop and study artificial intelligence methods and algorithms for solving real-time monitoring issues of electric rolling stock energy consumption. It was also determined that the most modern motion parameter recorders have a number of significant drawbacks from the data analysis point of view. Such drawbacks include insufficient data and their low reliability, lack of linking the recorded data to trips and locomotive teams, the impossibility of choosing a constant interval for recording measurement results. Moreover, there is also high probability of errors when recording data on the cartridge, lack of GPS/GLONASS satellite navigation system, lack of wireless data transmission, imperfection of software and inconvenience of exporting data from a cartridge file and its incompleteness. In order to test the energy efficiency assessment of electric rolling stock within the limits of arbitrary energy tracking areas, the Corresponding software was developed on the basis of data from the motion parameters recorders. However, developing the new complex automated system is required for the full implementation of the proposed consumption tracking method. Such system should combine the entire set of measured parameters, both for electric rolling stock and for the traction power supply system

    Approaches to Creating a Driver Decision Support System for Digital Analysis of Railway Infrastructure Based on Machine Learning and Machine Vision Algorithms

    No full text
    The paper considers the issues of creating a driver decision support system for digital analysis of the railway infrastructure based on machine learning and machine vision algorithms, which will take into account and analyse the given traffic schedule, infrastructure capabilities, dispatch centre teams, statuses of the nearest traffic participants for unmanned safe control of electric rolling stock. A detailed review of existing control systems in railway transport is made, which are based on technical vision

    NEW ASPECTS OF HYDRATE CONTROL AT NORTHERN GAS AND GAS CONDENSATE FIELDS OF NOVATEK

    No full text
    A thermodynamic inhibitor - methanol is used for hydrates control both at gas-gathering pipelines and gas conditioning / treatment field plants of Novatek JSC. Due to severe climate conditions and absence of serious infrastructure high operation costs for hydrate control take place. For reducing inhibitor losses some new technological solutions were proposed including recycling and regeneration of saturated methanol. A small module for producing methanol at field conditions was designed. Technological schemes for methanol injection and recirculation are discussed. These technologies reduce methanol losses. Small methanol-producing plant at Yurkharovskoe gas-condensate field (12.5 million ton methanol per year) integrated with field gas treatment plant is presented. The technology includes producing converted gas (syngas) from natural gas, catalytic process for raw methanol synthesis and rectification of raw methanol at final stage. Some particularities of the integrated technology are as follows. Not needs for preliminary purification of required raw materials (natural gas and water). Dried natural gas after conditioning (without any traces of sulfuric compounds) and pure water from simplified water treatment block are used. Rectification of raw methanol is combined with rectification of saturated methanol from gas treatment plant. Economic estimations show that the integrated methanol-producing technology and optimization of methanol circulation in technological processes essentially reduce capital and operational costs for hydrate control at northern gas and gas-condensate fields.Non UBCUnreviewe
    corecore