2 research outputs found

    Luminal and Tumor-Associated Gut Microbiome Features Linked to Precancerous Lesions Malignancy Risk: A Compositional Approach

    No full text
    Colorectal cancer is the third most commonly diagnosed cancer worldwide. Human gut microbiome plays important roles in protecting against it, as well as contributing to its onset and progression. Identification of specific bacterial taxa associated with early stages of colorectal cancer may help develop effective microbiome-based diagnostics. For precancerous lesions, links of their characteristics to luminal and tumor-associated microbiome composition are to be elucidated. Paired stool and tumor brush biopsy samples were collected from 50 patients with precancerous lesions and early forms of colon cancer; their microbial communities were profiled using high-throughput 16S rRNA sequencing. We showed that the microbiome differences between stool and biopsy samples can be to a high extent computationally corrected. Compositionality-aware statistical analysis of microbiome composition revealed its associations with the number of lesions, lesion type, location and malignization pathway. A major determinant of precancerous lesions malignancy risk—the number of lesions—was positively associated with the abundance of H2S-producing taxa. Our results contribute to the basis for developing early non-invasive colorectal cancer diagnostics via identifying microorganisms likely participating in early stages of cancer pathogenesis

    Diet and the Gut Microbiome as Determinants Modulating Metabolic Outcomes in Young Obese Adults

    No full text
    Obesity, along with metabolic disorders such as dyslipidemia and insulin resistance, increases the risk of cardiovascular disease, diabetes, various cancers, and other non-communicable diseases, thereby contributing to higher mortality rates. The intestinal microbiome plays a crucial role in maintaining homeostasis and influencing human metabolism. This study enrolled 82 young obese individuals, who were stratified into groups with or without metabolic disturbances. No significant differences in the alpha or beta diversity of the microbiota were observed among the groups. Insulin resistance was characterized by an increase in the number of Adlercreutzia and Dialister as well as a decrease in Collinsella, Coprococcus and Clostridiales. The dyslipidemia and dyslipidemia+insulin resistance groups had no significant differences in the gut microbiota. Dietary patterns also influenced microbial composition, with high protein intake increasing Leuconostoc and Akkermansia, and high fiber intake boosting Lactobacillus and Streptococcus. The genus Erwinia was associated with increases in visceral fat and serum glucose as well as a decrease in high-density lipoprotein cholesterol. Our findings highlight a significant association between gut microbiota composition and metabolic disturbances in young obese individuals, and they suggest that dietary modifications may promote a healthy microbiome and reduce the risk of developing metabolic disorders
    corecore