4 research outputs found

    Application of the erosion algorithm in modeling of structures behavior under impulse loads

    No full text
    The paper presents results of applying approach to simulation of contact surfaces fracture under high velocity interaction of solid bodies. The algorithm of erosion -the algorithm of elements removing, of new surface building and of mass distribution after elements fracture at contact boundaries is consider. The results of coordinated experimental and numerical studies of fracture of materials under impact are given. Authors own finite element computer software program EFES, allowing to simulate a three-dimensional setting behavior of complex structures under dynamic loads, has been used for the calculations

    Application of the erosion algorithm in modeling of structures behavior under impulse loads

    Get PDF
    The paper presents results of applying approach to simulation of contact surfaces fracture under high velocity interaction of solid bodies. The algorithm of erosion -the algorithm of elements removing, of new surface building and of mass distribution after elements fracture at contact boundaries is consider. The results of coordinated experimental and numerical studies of fracture of materials under impact are given. Authors own finite element computer software program EFES, allowing to simulate a three-dimensional setting behavior of complex structures under dynamic loads, has been used for the calculations

    Π Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹Ρ… конструкций ΠΈΠ· тяТСлого Π°Ρ€ΠΌΠΎΡ†Π΅ΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈ взаимодСйствии с высокоскоростным ΡƒΠ΄Π°Ρ€Π½ΠΈΠΊΠΎΠΌ

    No full text
    In this work, the fracture of a reinforced concrete barrier made of heavy reinforced ce- ment is numerically simulated during normal interaction with a high-velocity titanium projectile. The projectile has the initial velocity 750 m/s. The problem of impact interaction is numerically solved by the finite element method in a three-dimensional formulation within a phenomenological framework of solid mechanics. Numerical modeling is carried out using an original EFES 2.0 software, which al- lows a straightforward parallelization of the numerical algorithm. Fracture of concrete is described by the Johnson-Holmquist model that includes the strain rate dependence of the compressive and tensile strengths of concrete. The computational algorithm takes into account the formation of discontinuities in the material and the fragmentation of bodies with the formation of new contact and free surfaces. The behavior of the projectile material is described by an elastoplastic medium. The limiting value of the plastic strain intensity is taken as a local fracture criterion for the projectile material. A detailed numerical analysis was performed to study the stress and strain dynamics of the reinforced concrete target and the effect of shock-wave processes on its fracture. The influence of reinforcement on the resistance of a heavy cement target to the penetration of a projectile has been investigatedΠ’ Ρ€Π°Π±ΠΎΡ‚Π΅ числСнно модСлируСтся Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΆΠ΅Π»Π΅Π·ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ ΠΏΡ€Π΅Π³Ρ€Π°Π΄Ρ‹ ΠΈΠ· тяТСлого Π°Ρ€ΠΌΠΎΡ†Π΅ΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ взаимодСйствии с высокоскоростным Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹ΠΌ ΡƒΠ΄Π°Ρ€Π½ΠΈΠΊΠΎΠΌ. ΠΠ°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΡƒΠ΄Π°Ρ€Π½ΠΈΠΊΠ° составляла 750 ΠΌ/с. Π—Π°Π΄Π°Ρ‡Π° ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ взаимодСйствия Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ числСнно Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ постановкС Π² Ρ€Π°ΠΌΠΊΠ°Ρ… фСномСнологичСского ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ сплошной срСды. ЧислСнноС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ проводится с использованиСм авторского ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ комплСкса EFES 2.0, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π³ΠΎ эффСктивно Ρ€Π°ΡΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ. Π Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Π±Π΅Ρ‚ΠΎΠ½Π° описываСтся модСлью ДТонсона – Π₯олмквиста с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ зависимости прочности Π±Π΅Ρ‚ΠΎΠ½Π° Π½Π° сТатиС ΠΈ растяТСниС ΠΎΡ‚ скорости Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ Ρ‚Π΅Π» с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… ΠΈ свободных повСрхностСй. ПовСдСниС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΡƒΠ΄Π°Ρ€Π½ΠΈΠΊΠ° описываСтся упругопластичСской срСдой. Π’ качСствС критСрия локального Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΡƒΠ΄Π°Ρ€Π½ΠΈΠΊΠ° принимаСтся ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ интСнсивности пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ числСнный Π°Π½Π°Π»ΠΈΠ· Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ состояния ΠΆΠ΅Π»Π΅Π·ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ ΠΏΡ€Π΅Π³Ρ€Π°Π΄Ρ‹ ΠΈ влияния ΡƒΠ΄Π°Ρ€Π½ΠΎ-Π²ΠΎΠ»Π½ΠΎΠ²Ρ‹Ρ… процСссов Π½Π° Π΅Π΅ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅. ИсслСдовано влияниС армирования Π½Π° сопротивлСниС ΠΏΡ€Π΅Π³Ρ€Π°Π΄Ρ‹ ΠΈΠ· тяТСлого Π°Ρ€ΠΌΠΎΡ†Π΅ΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°Π½ΠΈΡŽ ΡƒΠ΄Π°Ρ€Π½ΠΈΠΊ
    corecore