66 research outputs found

    Variation in amount of wild-type transthyretin in different fibril and tissue types in ATTR amyloidosis

    Get PDF
    Familial transthyretin (TTR) amyloidosis is caused by a mutation in the TTR gene, although wild-type (wt) TTR is also incorporated into the amyloid fibrils. Liver transplantation (LT) is the prevailing treatment of the disease and is performed in order to eliminate the mutant TTR from plasma. The outcome of the procedure is varied; especially problematic is a progressive cardiomyopathy seen in some patients, presumably caused by continued incorporation of wtTTR. What determines the discrepancy in outcome is not clear. We have previously shown that two structurally distinct amyloid fibrils (with or without fragmented ATTR) are found among ATTRV30M patients. In this study, we investigated the proportion of wtATTR in cardiac and adipose amyloid from patients having either fibril type. It was found that cardiac amyloid more easily incorporates wtTTR than adipose amyloid, offering a potential explanation for the vulnerability of cardiac tissue for continued amyloidosis after LT. In cardiac tissue, fibrils with fragmented ATTR contained a higher wt proportion than fibrils without, suggesting that continued incorporation of wtTTR after LT, perhaps, can take place more easily in these patients. In adipose tissue, a rapid increase in wt proportion after LT indicates that a rather fast turnover of the deposits must occur. A difference in wt proportion between the fibril types was seen post-LT but not pre-LT, possibly caused by differences in turnover rate. Conclusively, this study further establishes the basic dissimilarities between the two fibril types and demonstrates that their role in LT outcome needs to be further investigated

    The structural basis of protein folding and its links with human disease.

    No full text
    The ability of proteins to fold to their functional states following synthesis in the intracellular environment is one of the most remarkable features of biology. Substantial progress has recently been made towards understanding the fundamental nature of the mechanism of the folding process. This understanding has been achieved through the development and concerted application of a variety of novel experimental and theoretical approaches to this complex problem. The emerging view of folding is that it is a stochastic process, but one biased by the fact that native-like interactions between residues are on average more stable than non-native ones. The sequences of natural proteins have emerged through evolutionary processes such that their unique native states can be found very efficiently even in the complex environment inside a living cell. But under some conditions proteins fail to fold correctly, or to remain correctly folded, in living systems, and this failure can result in a wide range of diseases. One group of diseases, known as amyloidoses, which includes Alzheimer's and the transmissible spongiform encephalopathies, involves deposition of aggregated proteins in a variety of tissues. These diseases are particularly intriguing because evidence is accumulating that the formation of the highly organized amyloid aggregates is a generic property of polypeptides, and not simply a feature of the few proteins associated with recognized pathological conditions. That such aggregates are not normally found in properly functional biological systems is again a testament to evolution, in this case of a variety of mechanisms inhibiting their formation. Understanding the nature of such protective mechanisms is a crucial step in the development of strategies to prevent and treat these debilitating diseases
    • …
    corecore