284 research outputs found

    Update on treatment options for Lambert–Eaton myasthenic syndrome: focus on use of amifampridine

    Get PDF
    In Lambert–Eaton myasthenic syndrome (LEMS), antibodies against presynaptic voltage-gated calcium channels reduce the quantal release of acetylcholine, causing muscle weakness and autonomic dysfunction. More than half of the affected patients have associated small cell lung cancer, and thorough screening for an underlying malignancy is crucial. The mainstay of treatment for LEMS is symptomatic but immunotherapy is needed in more severely affected patients. Symptomatic therapies aim at increasing the concentration of acetylcholine at the muscle endplate. While acetylcholinesterase inhibitors were the first drugs to be used for the amelioration of symptoms, 3,4-diaminopyridine (3,4-DAP, amifampridine) has been shown to be more effective. 3,4-DAP blocks presynaptic potassium channels, thereby prolonging the action potential and increasing presynaptic calcium concentrations. This then results in increased quantal release of acetylcholine. The efficacy of 3,4-DAP for increasing muscle strength and resting compound muscle action potentials has been demonstrated by four placebo-controlled trials. Side effects are usually mild, and the most frequently reported are paresthesias. The most common serious adverse events are epileptic seizures. 3,4-DAP is currently the treatment of choice in patients with Lambert–Eaton myasthenic syndrome

    IFN-Îł Producing Th1 Cells Induce Different Transcriptional Profiles in Microglia and Astrocytes

    Get PDF
    Autoreactive T cells that infiltrate into the central nervous system (CNS) are believed to have a significant role in mediating the pathology of neuroinflammatory diseases like multiple sclerosis. Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of neuroinflammatory processes. Our previous work demonstrated that effectors secreted by Th1 and Th17 cells have different capacities to influence the phenotype and function of glial cells. We have shown that Th1-derived effectors altered the phenotype and function of both microglia and astrocytes whereas Th17-derived effectors induced direct effects only on astrocytes but not on microglia. Here we investigated if effector molecules associated with IFN-Îł producing Th1 cells induced different gene expression profiles in microglia and astrocytes. We performed a microarray analysis of RNA isolated from microglia and astrocytes treated with medium and Th-derived culture supernatants and compared the gene expression data. By using the criteria of 2-fold change and a false discovery rate of 0.01 (corrected p < 0.01), we demonstrated that a total of 2,106 and 1,594 genes were differentially regulated in microglia and astrocytes, respectively, in response to Th1-derived factors. We observed that Th1-derived effectors induce distinct transcriptional changes in microglia and astrocytes in addition to commonly regulated transcripts. These distinct transcriptional changes regulate peculiar physiological functions, and this knowledge can help to better understand T cell mediated neuropathologies

    Polysialic acid promotes remyelination in cerebellar slice cultures by Siglec-E-dependent modulation of microglia polarization

    Get PDF
    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Spontaneous restoration of myelin after demyelination occurs, but its efficiency declines during disease progression. Efficient myelin repair requires fine-tuning inflammatory responses by brain-resident microglia and infiltrating macrophages. Accordingly, promising therapeutic strategies aim at controlling inflammation to promote remyelination. Polysialic acid (polySia) is a polymeric glycan with variable chain lengths, presented as a posttranslational modification on select protein carriers. PolySia emerges as a negative regulator of inflammatory microglia and macrophage activation and has been detected on oligodendrocyte precursors and reactive astrocytes in multiple sclerosis lesions. As shown recently, polySia-modified proteins can also be released by activated microglia, and the intrinsically released protein-bound and exogenously applied free polySia were equally able to attenuate proinflammatory microglia activation via the inhibitory immune receptor Siglec-E. In this study, we explore polySia as a candidate substance for promoting myelin regeneration by immunomodulation. Lysophosphatidylcholine-induced demyelination of organotypic cerebellar slice cultures was used as an experimental model to analyze the impact of polySia with different degrees of polymerization (DP) on remyelination and inflammation. In lysophosphatidylcholine-treated cerebellar slice cultures, polySia-positive cells were abundant during demyelination but largely reduced during remyelination. Based on the determination of DP24 as the minimal polySia chain length required for the inhibition of inflammatory BV2 microglia activation, pools with short and long polySia chains (DP8–14 and DP24–30) were generated and applied to slice cultures during remyelination. Unlike DP8–14, treatment with DP24–30 significantly improved remyelination, increased arginase-1-positive microglia ratios, and reduced the production of nitric oxide in wildtype, but not in Siglec-E-deficient slice cultures. In vitro differentiation of oligodendrocytes was not affected by DP24–30. Collectively, these results suggest a beneficial effect of exogenously applied polySia DP24–30 on remyelination by Siglec-E-dependent microglia regulation

    Spatial and Temporal Profiles of Growth Factor Expression during CNS Demyelination Reveal the Dynamics of Repair Priming

    Get PDF
    Demyelination is the cause of disability in various neurological disorders. It is therefore crucial to understand the molecular regulation of oligodendrocytes, the myelin forming cells in the CNS. Growth factors are known to be essential for the development and maintenance of oligodendrocytes and are involved in the regulation of glial responses in various pathological conditions. We employed the well established murine cuprizone model of toxic demyelination to analyze the expression of 13 growth factors in the CNS during de- and remyelination. The temporal mRNA expression profile during demyelination and the subsequent remyelination were analyzed separately in the corpus callosum and cerebral cortex using laser microdissection and real-time PCR techniques. During demyelination a similar pattern of growth factor mRNA expression was observed in both areas with a strong up-regulation of NRG1 and GDNF and a slight increase of CNTF in the first week of cuprizone treatment. HGF, FGF-2, LIF, IGF-I, and TGF-Ăź1 were up-regulated mainly during peak demyelination. In contrast, during remyelination there were regional differences in growth factor mRNA expression levels. GDNF, CNTF, HGF, FGF-2, and BDNF were elevated in the corpus callosum but not in the cortex, suggesting tissue differences in the molecular regulation of remyelination in the white and grey matter. To clarify the cellular source we isolated microglia from the cuprizone lesions. GDNF, IGF-1, and FGF mRNA were detected in the microglial fraction with a temporal pattern corresponding to that from whole tissue PCR. In addition, immunohistochemical analysis revealed IGF-1 protein expression also in the reactive astrocytes. CNTF was located in astrocytes. This study identified seven different temporal expression patterns for growth factors in white and grey matter and demonstrated the importance of early tissue priming and exact orchestration of different steps during callosal and cortical de- and remyelination

    Severe Progressive Multifocal Leukoencephalopathy (PML) and Spontaneous Immune Reconstitution Inflammatory Syndrome (IRIS) in an Immunocompetent Patient

    Get PDF
    Background: Progressive multifocal leukoencephalopathy (PML) is an opportunistic infection with JC-virus (JCV), a papova-virus, affecting mostly oligodendrocytes and the white matter of the central nervous system. Progressive Multifocal Leukoencephalopathy (PML) almost exclusively occurs in immunocompromised patients based on different underlying conditions of severe cellular immunodeficiency such as HIV/AIDS, secondary to neoplastic and autoimmune diseases, or during immunosuppressive therapy.Case presentation: We present the case of an otherwise healthy and immunocompetent patient without immunosuppressive therapy who was admitted with hemianopsia to the right side, sensory aphasia and changes of behavior. Magnet resonance imaging (MRI) and laboratory testing confirmed the diagnosis of PML, although functional tests did not show any evidence for cellular immunodeficiency. Extensive immunological tests did not reveal an apparent immunodeficiency. During symptomatic therapy the patient developed seizures which were assumed to be caused by a spontaneous immune reconstitution inflammatory syndrome (IRIS) demonstrated by MRI. We added a high dose of intravenous corticosteroids to the antiepileptic treatment and seizures ended shortly thereafter. However, the impairments of vision, behavior and language persisted.Conclusions: Our case report highlights that an apparently immunocompetent patient can develop PML and IRIS spontaneously. Therefore, MRI should be applied immediately whenever a rapid progression of PML symptoms occurs as treatment of IRIS with corticosteroids can result in a marked clinical improvement

    Investigation of Oligoclonal IgG Bands in Tear Fluid of Multiple Sclerosis Patients

    Get PDF
    Background: Oligoclonal IgG bands (OCB) in the cerebrospinal fluid (CSF) represent a typical marker for inflammation in multiple sclerosis (MS) patients and have a predictive and diagnostic value in patients with a first suspected demyelinating event. The detection in tears remains controversial but some reports suggested a replacement of CSF analysis by OCB detection in tears. We aimed to investigate the value of OCB detection in tears systematically in patients with MS.Methods: Tears of 59 patients with suspected or diagnosed MS were collected with Schirmer filter paper strips. Tear IgG was purified by affinity chromatography with protein G. After isoelectric focusing in polyacrylamide gels OCB detection was performed with direct silver staining. Paired triplets of CSF, serum, and tears were analyzed. For comparison purposes we additionally used other tear collection methods (flush procedure and plastic capillary tubes) or detection techniques (Immunoblotting). Clinical and paraclinical parameters are provided.Results: IgG collection in tears was most reliable by using Schirmer strips. Thirteen patients had to be excluded due to insufficient sample material. Tear specific proteins that interfered with OCB detection were successfully eliminated by IgG purification. The concordance of OCB in tears and CSF of all investigated MS patients was 39% with a high rate of only marginal pattern in tears. Five patients demonstrated restricted bands in tears, neither detectable in CSF nor serum. Occurrence of OCB in tears was significantly associated with pathological visual evoked potentials (P = 0.0094) and a history of optic neuritis (P = 0.0258).Conclusion: Due to the limited concordance, high rate of samples with insufficient material, and the unknown origin of tear IgG we cannot recommend that tear OCB detection may replace CSF OCB detection in MS patients. The detection of unique OCB in tears might offer new insights in ophthalmological diseases

    Impact of the McDonald Criteria 2017 on Early Diagnosis of Relapsing-Remitting Multiple Sclerosis

    Get PDF
    Multiple sclerosis is a chronic immune mediated demyelinating disease leading to neurological disabilities that need to be diagnosed and treated early. Guidelines on multiple sclerosis diagnosis and monitoring experienced comprehensive changes over the last decades. The first McDonald criteria published in 2001 emphasized the importance of MR imaging but also recognized the role of cerebrospinal fluid diagnostics. The demonstration of an intrathecal immunoglobulin G synthesis is a well-established additional component and has a long tradition in the diagnosis of relapsing-remitting multiple sclerosis. However, the role of cerebrospinal fluid for diagnostic purposes was rather diminished in each revision of the McDonald criteria. In the latest revision of the McDonald criteria of 2017, the detection of an intrathecal immunoglobulin G synthesis as oligoclonal bands experienced a revival. Patients with the first clinical event suggesting multiple sclerosis who fulfill the criteria for dissemination in space can be diagnosed with relapsing-remitting multiple sclerosis when oligoclonal bands in cerebrospinal fluid are detected. The diagnostic sensitivity of these novel criteria with a focus on dissemination in time and oligoclonal bands as a substitute for dissemination in time was published in different cohorts in the last year and is of special interest in this review. Recently published data show that by applying the 2017 McDonald criteria, multiple sclerosis can be diagnosed more frequently at the time of first clinical event as compared to the 2010 McDonald criteria. The main effect was due to the implementation of oligoclonal bands as a substitute for dissemination in time. However, careful differential diagnosis is essential in patients with atypical clinical manifestations to avoid misdiagnoses
    • …
    corecore