70 research outputs found

    Joint Channel Selection and Power Control in Infrastructureless Wireless Networks: A Multi-Player Multi-Armed Bandit Framework

    Full text link
    This paper deals with the problem of efficient resource allocation in dynamic infrastructureless wireless networks. Assuming a reactive interference-limited scenario, each transmitter is allowed to select one frequency channel (from a common pool) together with a power level at each transmission trial; hence, for all transmitters, not only the fading gain, but also the number of interfering transmissions and their transmit powers are varying over time. Due to the absence of a central controller and time-varying network characteristics, it is highly inefficient for transmitters to acquire global channel and network knowledge. Therefore a reasonable assumption is that transmitters have no knowledge of fading gains, interference, and network topology. Each transmitting node selfishly aims at maximizing its average reward (or minimizing its average cost), which is a function of the action of that specific transmitter as well as those of all other transmitters. This scenario is modeled as a multi-player multi-armed adversarial bandit game, in which multiple players receive an a priori unknown reward with an arbitrarily time-varying distribution by sequentially pulling an arm, selected from a known and finite set of arms. Since players do not know the arm with the highest average reward in advance, they attempt to minimize their so-called regret, determined by the set of players' actions, while attempting to achieve equilibrium in some sense. To this end, we design in this paper two joint power level and channel selection strategies. We prove that the gap between the average reward achieved by our approaches and that based on the best fixed strategy converges to zero asymptotically. Moreover, the empirical joint frequencies of the game converge to the set of correlated equilibria. We further characterize this set for two special cases of our designed game

    Channel Selection for Network-assisted D2D Communication via No-Regret Bandit Learning with Calibrated Forecasting

    Full text link
    We consider the distributed channel selection problem in the context of device-to-device (D2D) communication as an underlay to a cellular network. Underlaid D2D users communicate directly by utilizing the cellular spectrum but their decisions are not governed by any centralized controller. Selfish D2D users that compete for access to the resources construct a distributed system, where the transmission performance depends on channel availability and quality. This information, however, is difficult to acquire. Moreover, the adverse effects of D2D users on cellular transmissions should be minimized. In order to overcome these limitations, we propose a network-assisted distributed channel selection approach in which D2D users are only allowed to use vacant cellular channels. This scenario is modeled as a multi-player multi-armed bandit game with side information, for which a distributed algorithmic solution is proposed. The solution is a combination of no-regret learning and calibrated forecasting, and can be applied to a broad class of multi-player stochastic learning problems, in addition to the formulated channel selection problem. Analytically, it is established that this approach not only yields vanishing regret (in comparison to the global optimal solution), but also guarantees that the empirical joint frequencies of the game converge to the set of correlated equilibria.Comment: 31 pages (one column), 9 figure

    Stability and Distributed Power Control in MANETs with Outages and Retransmissions

    Full text link
    In the current work the effects of hop-by-hop packet loss and retransmissions via ARQ protocols are investigated within a Mobile Ad-hoc NET-work (MANET). Errors occur due to outages and a success probability function is related to each link, which can be controlled by power and rate allocation. We first derive the expression for the network's capacity region, where the success function plays a critical role. Properties of the latter as well as the related maximum goodput function are presented and proved. A Network Utility Maximization problem (NUM) with stability constraints is further formulated which decomposes into (a) the input rate control problem and (b) the scheduling problem. Under certain assumptions problem (b) is relaxed to a weighted sum maximization problem with number of summants equal to the number of nodes. This further allows the formulation of a non-cooperative game where each node decides independently over its transmitting power through a chosen link. Use of supermodular game theory suggests a price based algorithm that converges to a power allocation satisfying the necessary optimality conditions of (b). Implementation issues are considered so that minimum information exchange between interfering nodes is required. Simulations illustrate that the suggested algorithm brings near optimal results.Comment: 25 pages, 6 figures, 1 table, submitted to the IEEE Trans. on Communication

    Spectral radii of asymptotic mappings and the convergence speed of the standard fixed point algorithm

    Full text link
    Important problems in wireless networks can often be solved by computing fixed points of standard or contractive interference mappings, and the conventional fixed point algorithm is widely used for this purpose. Knowing that the mapping used in the algorithm is not only standard but also contractive (or only contractive) is valuable information because we obtain a guarantee of geometric convergence rate, and the rate is related to a property of the mapping called modulus of contraction. To date, contractive mappings and their moduli of contraction have been identified with case-by-case approaches that can be difficult to generalize. To address this limitation of existing approaches, we show in this study that the spectral radii of asymptotic mappings can be used to identify an important subclass of contractive mappings and also to estimate their moduli of contraction. In addition, if the fixed point algorithm is applied to compute fixed points of positive concave mappings, we show that the spectral radii of asymptotic mappings provide us with simple lower bounds for the estimation error of the iterates. An immediate application of this result proves that a known algorithm for load estimation in wireless networks becomes slower with increasing traffic.Comment: Paper accepted for presentation at ICASSP 201

    MAC Resolvability: First And Second Order Results

    Full text link
    Building upon previous work on the relation between secrecy and channel resolvability, we revisit a secrecy proof for the multiple-access channel from the perspective of resolvability. We then refine the approach in order to obtain some novel results on the second-order achievable rates.Comment: Slightly extended version of the paper accepted at the 4th Workshop on Physical-Layer Methods for Wireless Security during IEEE CNS 2017. v2: Fixed typos and extended literature section in accordance with reviewers' recommendation
    corecore