54 research outputs found

    Influence of the Microwaves on the Sol-Gel Syntheses and on the Properties of the Resulting Oxide Nanostructures

    Get PDF
    Among the chemical methods in the liquid phase, the sol–gel technique is a versatile and efficient method for pure or doped metal oxide films or powders preparation, showing some advantages over other preparation techniques (high homogeneity, the possibility to introducing dopants in large amount, low processing temperature and control over the stoichiometry). Combining the sol–gel (SG)method with the effect of ultrasounds(US) or microwaves (MW) leads to improving the sol–gel procedure. The microwave-assisted sol–gel method is most frequently used for obtaining nanocrystalline, monodispersed oxide nanoparticles, or to transform amorphous gels into well-crystallized nanopowders. Less studied is the influence of the microwaves on the sol–gel reactions in solutions. The benefit of using microwave-assisted sol–gel preparation highly depends on the reagents used and on the composition of the studied systems. In the present chapter, results on the influence of the microwaves on the chemical reactions that take place during the sol–gel synthesis and on the properties of the resulted samples are discussed

    A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13).

    Get PDF
    BACKGROUND: Rhinovirus infection is a major cause of asthma exacerbations. OBJECTIVES: We studied nasal and bronchial mucosal inflammatory responses during experimental rhinovirus-induced asthma exacerbations. METHODS: We used nasosorption on days 0, 2-5 and 7 and bronchosorption at baseline and day 4 to sample mucosal lining fluid to investigate airway mucosal responses to rhinovirus infection in patients with allergic asthma (n=28) and healthy non-atopic controls (n=11), by using a synthetic absorptive matrix and measuring levels of 34 cytokines and chemokines using a sensitive multiplex assay. RESULTS: Following rhinovirus infection asthmatics developed more upper and lower respiratory symptoms and lower peak expiratory flows compared to controls (all P<0.05). Asthmatics also developed higher nasal lining fluid levels of an anti-viral pathway (including IFN-γ, IFN-λ/IL-29, CXCL11/ITAC, CXCL10/IP10 and IL-15) and a type 2 inflammatory pathway (IL-4, IL-5, IL-13, CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3) (area under curve day 0-7, all P<0.05). Nasal IL-5 and IL-13 were higher in asthmatics at day 0 (P<0.01) and levels increased by days 3 and 4 (P<0.01). A hierarchical correlation matrix of 24 nasal lining fluid cytokine and chemokine levels over 7days demonstrated expression of distinct interferon-related and type 2 pathways in asthmatics. In asthmatics IFN-γ, CXCL10/IP10, CXCL11/ITAC, IL-15 and IL-5 increased in bronchial lining fluid following viral infection (all P<0.05). CONCLUSIONS: Precision sampling of mucosal lining fluid identifies robust interferon and type 2 responses in the upper and lower airways of asthmatics during an asthma exacerbation. Nasosorption and bronchosorption have potential to define asthma endotypes in stable disease and at exacerbation

    The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations

    Get PDF
    Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-κB- and α/β interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations

    The role of IL-15 in response to rhinovirus infections

    No full text
    Rhinoviruses (RV) cause the common cold and are major precipitants of asthma exacerbations. The underlying mechanisms of RV-induced airways disease are unclear. IL-15 is a proinflammatory cytokine produced during viral infections and plays a key role in the regulation of NK cells. Using mouse models of RV infection and RV-induced asthma exacerbation we examined the role of IL-15 and its importance for NK cell responses during RV infections in allergic and non-allergic airways. We demonstrate RV-induced IL-15 upregulation in the airway and lungs of BALB/c mice at day 1 after infection and accumulation of NK cells in the airway and lungs at days 1-2 and 2-4 respectively. The NK cells exhibited an activated phenotype characterised by upregulated CD69, IFN-γ and GranzymeB expression. Blocking IL-15 upon intranasal administration of an IL-15 neutralising antibody inhibited the NK cell response to RV infection, which was associated with deficient IFN-γ production and increased expression of Th2 mediators. IL-15Rα knockout mice lack NK cells and also demonstrated deficient IFN-γ and increased Th2 responses to RV infection; these mice also exhibited deficient CD8+ T cell responses and an increased viral load. Similar results were observed in RV infected IFNAR1 ko mice, which was associated with deficient IL-15 upregulation. We suggest that RV-induced IL-15 is mediated by type I interferon signalling, and is necessary for NK cell responses and early IFN-γ production during RV-1B infection, which drives development of appropriate Th1 antiviral responses. In the absence of this pathway, Th2 responses result and are associated with impaired antiviral immunity. To examine the interaction between allergen driven Th2 immunity and RV infection, we employed a RV-induced asthma exacerbation model. Unexpectedly, RV infected allergen challenged mice, despite having increased viral load, demonstrated increased IL-15 expression and NK cell responses, revealing a novel interaction between allergic responses and antiviral immunity.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    AGROBIOLOGICAL ASSESSMENT OF SOME ROMANIAN SEA BUCKTHORN GENOTYPES

    No full text
    Recently the sea buckthorn is come a cultivated species. The research on this species should be focused on more efficient harvesting method, new cultivars suitable to European climate; bigger yields by right cultivation methods, pest and diseases control. In Romania, the sea buckthorn is found in at different altitudes ranging from 0 to 1200 m in wild flora. In this paper were studied 8 genotypes from the wild flora. To these genotypes we evaluated 6 quality features. The study revealed the Pitesti 5 genotype

    Increased interleukin-4, interleukin-5, and interferon-gamma in airway CD4+ and CD8+ T cells in atopic asthma

    No full text
    Increased Th2 cytokine production in asthma is widely accepted, but excess production by asthmatic human airway CD4+ T cells has not been demonstrated, nor has a relationship with disease severity. The importance of airway CD8+ T cell type 1 and type 2 cytokine production in asthma is unknown. We investigated frequencies of IFN-{gamma}, interleukin (IL)-4 and IL-5 producing CD4+ and CD8+ blood and sputum T cells from normal subjects and subjects with asthma and compared between cell subsets, subject groups, and body compartments with and without in vitro stimulation and investigated relationships between cytokine production and asthma severity. Production of IL-4, IL-5, and IFN-{gamma} by unstimulated sputum CD4+ and CD8+ T cells was increased in subjects with asthma and related to disease severity, more for CD8+ than for CD4+ T cells. Frequencies of sputum CD8+ T cells producing type 1 and type 2 cytokines were similar to those of CD4+ T cells. In vitro stimulation polarized peripheral blood cytokine production toward IFN-{gamma} production, significantly more in subjects with asthma than in normal subjects. These data demonstrate increased type 1 and 2 cytokine production in CD4+ and CD8+ T cells in sputum and relate production to disease severity. Findings in blood did not reflect those in airways

    Relevance of Biomarkers Currently in Use or Research for Practical Diagnosis Approach of Neonatal Early-Onset Sepsis

    No full text
    Neonatal early-onset sepsis (EOS) is defined as an invasive infection that occurs in the first 72 h of life. The incidence of EOS varies from 0.5&ndash;2% live births in developed countries, up to 9.8% live births in low resource settings, generating a high mortality rate, especially in extremely low birth weight neonates. Clinical signs are nonspecific, leading to a late diagnosis and high mortality. Currently, there are several markers used for sepsis evaluation, such as hematological indices, acute phase reactants, cytokines, which by themselves do not show acceptable sensitivity and specificity for the diagnosis of EOS in neonates. Newer and more selective markers have surfaced recently, such as presepsin and endocan, but they are currently only in the experimental research stages. This comprehensive review article is based on the role of biomarkers currently in use or in the research phase from a basic, translational, and clinical viewpoint that helps us to improve the quality of neonatal early-onset sepsis diagnosis and management

    Vitamin D modulation of innate immune responses to respiratory viral infections.

    No full text
    International audienceVitamin D, in addition to its classical functions in bone homeostasis, has a modulatory and regulatory role in multiple processes, including host defense, inflammation, immunity, and epithelial repair. Patients with respiratory disease are frequently deficient in vitamin D, implying that supplementation might provide significant benefit to these patients. Respiratory viral infections are common and are the main trigger of acute exacerbations and hospitalization in children and adults with asthma and other airways diseases. Respiratory monocytes/macrophages and epithelial cells constitutively express the vitamin D receptor. Vitamin D, acting through this receptor, may be important in protection against respiratory infections. Whether the in vitro findings can be translated into a substantial in vivo benefit still remains uncertain. Here we review the in vitro data on the role of vitamin D in antiviral innate immunity, the data concerning the deficient levels of vitamin D in lung diseases, and the in vivo role of supplementation as protection against respiratory viral infections in healthy individuals and in patients with chronic respiratory diseases. Finally, we suggest ways of improving the effectiveness of vitamin D as an adjuvant in the prevention and treatment of acute respiratory infections
    corecore