82 research outputs found
Far-field approximation for hydrodynamic interactions in parallel-wall geometry
A complete analysis is presented for the far-field creeping flow produced by
a multipolar force distribution in a fluid confined between two parallel planar
walls. We show that at distances larger than several wall separations the flow
field assumes the Hele-Shaw form, i.e., it is parallel to the walls and varies
quadratically in the transverse direction. The associated pressure field is a
two-dimensional harmonic function that is characterized by the same multipolar
number m as the original force multipole. Using these results we derive
asymptotic expressions for the Green's matrix that represents Stokes flow in
the wall-bounded fluid in terms of a multipolar spherical basis. This Green's
matrix plays a central role in our recently proposed algorithm [Physica A xx,
{\bf xxx} (2005)] for evaluating many-body hydrodynamic interactions in a
suspension of spherical particles in the parallel-wall geometry. Implementation
of our asymptotic expressions in this algorithm increases its efficiency
substantially because the numerically expensive evaluation of the exact matrix
elements is needed only for the neighboring particles. Our asymptotic analysis
will also be useful in developing hydrodynamic algorithms for wall-bounded
periodic systems and implementing acceleration methods by using corresponding
results for the two-dimensional scalar potential.Comment: 28 pages 5 figure
Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces
The forces between colloidal particles at a decane-water interface, in the
presence of low concentrations of a monovalent salt (NaCl) and of the
surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been
studied using laser tweezers. In the absence of electrolyte and surfactant,
particle interactions exhibit a long-range repulsion, yet the variation of the
interaction for different particle pairs is found to be considerable. Averaging
over several particle pairs was hence found to be necessary to obtain reliable
assessment of the effects of salt and surfactant. It has previously been
suggested that the repulsion is consistent with electrostatic interactions
between a small number of dissociated charges in the oil phase, leading to a
decay with distance to the power -4 and an absence of any effect of electrolyte
concentration. However, the present work demonstrates that increasing the
electrolyte concentration does yield, on average, a reduction of the magnitude
of the interaction force with electrolyte concentration. This implies that
charges on the water side also contribute significantly to the electrostatic
interactions. An increase in the concentration of SDS leads to a similar
decrease of the interaction force. Moreover the repulsion at fixed SDS
concentrations decreases over longer times. Finally, measurements of three-body
interactions provide insight into the anisotropic nature of the interactions.
The unique time-dependent and anisotropic interactions between particles at the
oil-water interface allow tailoring of the aggregation kinetics and structure
of the suspension structure.Comment: Submitted to Langmui
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanellaoneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research
Proteomic Analysis of Growth Phase-Dependent Expression of Legionella pneumophila Proteins Which Involves Regulation of Bacterial Virulence Traits
Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase
Role of IncP-1β plasmids pWDL7
Broad-host-range catabolic plasmids play an important role in bacterial degradation of man-made compounds. To gain insight into the role of these plasmids in chloroaniline degradation, we determined the first complete nucleotide sequences of an IncP-1 chloroaniline degradation plasmid, pWDL7::rfp and its close relative pNB8c, as well as the expression pattern, function, and bioaugmentation potential of the putative 3-chloroaniline (3-CA) oxidation genes. Based on phylogenetic analysis of backbone proteins, both plasmids are members of a distinct clade within the IncP-1β subgroup. The plasmids are almost identical, but whereas pWDL7::rfp carries a duplicate inverted catabolic transposon, Tn6063, containing a putative 3-CA oxidation gene cluster, dcaQTA1A2BR, pNB8c contains only a single copy of the transposon. No genes for an aromatic ring cleavage pathway were detected on either plasmid, suggesting that only the upper 3-CA degradation pathway was present. The dcaA1A2B gene products expressed from a high-copy-number vector were shown to convert 3-CA to 4-chlorocatechol in Escherichia coli. Slight differences in the dca promoter region between the plasmids and lack of induction of transcription of the pNB8c dca genes by 3-CA may explain previous findings that pNB8C does not confer 3-CA transformation. Bioaugmentation of activated sludge with pWDL7::rfp accelerated removal of 3-CA, but only in the presence of an additional carbon source. Successful bioaugmentation requires complementation of the upper pathway genes with chlorocatechol cleavage genes in indigenous bacteria. The genome sequences of these plasmids thus help explain the molecular basis of their catabolic activities
- …