9 research outputs found

    Scoping Potential Routes to UK Civil Unrest via the Food System: Results of a Structured Expert Elicitation

    Get PDF
    We report the results of a structured expert elicitation to identify the most likely types of potential food system disruption scenarios for the UK, focusing on routes to civil unrest. We take a backcasting approach by defining as an end-point a societal event in which 1 in 2000 people have been injured in the UK, which 40% of experts rated as “Possible (20–50%)”, “More likely than not (50–80%)” or “Very likely (>80%)” over the coming decade. Over a timeframe of 50 years, this increased to 80% of experts. The experts considered two food system scenarios and ranked their plausibility of contributing to the given societal scenario. For a timescale of 10 years, the majority identified a food distribution problem as the most likely. Over a timescale of 50 years, the experts were more evenly split between the two scenarios, but over half thought the most likely route to civil unrest would be a lack of total food in the UK. However, the experts stressed that the various causes of food system disruption are interconnected and can create cascading risks, highlighting the importance of a systems approach. We encourage food system stakeholders to use these results in their risk planning and recommend future work to support prevention, preparedness, response and recovery planning

    Risk of death following COVID-19 vaccination or positive SARS-CoV-2 test in young people in England

    Get PDF
    Rare but serious cardiac disease side effects have been linked to COVID-19 vaccinations, especially in young people. Here, the authors find very little evidence of an association between vaccination and mortality, except for in females after a non mRNA vaccine, but show an increased risk of death following COVID-19 infectio

    Role of Glutamine Synthetase in Nitrogen Metabolite Repression in Aspergillus nidulans

    No full text
    Glutamine synthetase (GS), EC 6.3.1.2, is a central enzyme in the assimilation of nitrogen and the biosynthesis of glutamine. We have isolated the Aspergillus nidulans glnA gene encoding GS and have shown that glnA encodes a highly expressed but not highly regulated mRNA. Inactivation of glnA results in an absolute glutamine requirement, indicating that GS is responsible for the synthesis of this essential amino acid. Even when supplemented with high levels of glutamine, strains lacking a functional glnA gene have an inhibited morphology, and a wide range of compounds have been shown to interfere with repair of the glutamine auxotrophy. Heterologous expression of the prokaryotic Anabaena glnA gene from the A. nidulans alcA promoter allowed full complementation of the A. nidulans glnAΔ mutation. However, the A. nidulans fluG gene, which encodes a protein with similarity to prokaryotic GS, did not replace A. nidulans glnA function when similarly expressed. Our studies with the glnAΔ mutant confirm that glutamine, and not GS, is the key effector of nitrogen metabolite repression. Additionally, ammonium and its immediate product glutamate may also act directly to signal nitrogen sufficiency

    Cluster-assembled zirconia substrates promote long-term differentiation and functioning of human islets of Langerhans

    Get PDF
    Ex vivo expansion and differentiation of human pancreatic Ăź-cell are enabling steps of paramount importance for accelerating the development of therapies for diabetes. The success of regenerative strategies depends on their ability to reproduce the chemical and biophysical properties of the microenvironment in which Ăź-cells develop, proliferate and function. In this paper we focus on the biophysical properties of the extracellular environment and exploit the cluster-assembled zirconia substrates with tailored roughness to mimic the nanotopography of the extracellular matrix. We demonstrate that Ăź-cells can perceive nanoscale features of the substrate and can convert these stimuli into mechanotransductive processes which promote long-term in vitro human islet culture, thus preserving Ăź-cell differentiation and function. Proteomic and quantitative immunofluorescence analyses demonstrate that the process is driven by nanoscale topography, via remodelling of the actin cytoskeleton and nuclear architecture. These modifications activate a transcriptional program which stimulates an adaptive metabolic glucose response. Engineered cluster-assembled substrates coupled with proteomic approaches may provide a useful strategy for identifying novel molecular targets for treating diabetes mellitus and for enhancing tissue engineering in order to improve the efficacy of islet cell transplantation therapies
    corecore