655 research outputs found

    Spin canting induced large nonreciprocal Goos-Hänchen shifts

    Get PDF
    Recent studies on surface reflection illustrate how light beams can be laterally shifted from the position predicted by geometrical optics, the so called Goos-Hänchen effect. In antiferromagnets this shifts can be controlled with an external magnetic field. We show that a configuration in which spins cant in response to applied magnetic fields enhance possibilities of field controlled shifts. Moreover, we show that nonreciprocal displacements are possible, for both oblique and normal incidence, due to inherent nonreciprocity of the polariton phase with respect to the propagation direction. In the absence of an external field, reciprocal displacements occur

    Disorder regimes and equivalence of disorder types in artificial spin ice

    Full text link
    The field-induced dynamics of artificial spin ice are determined in part by interactions between magnetic islands, and the switching characteristics of each island. Disorder in either of these affects the response to applied fields. Numerical simulations are used to show that disorder effects are determined primarily by the strength of disorder relative to inter-island interactions, rather than by the type of disorder. Weak and strong disorder regimes exist and can be defined in a quantitative way.Comment: The following article has been submitted to J. Appl. Phys. After it is published, it will be found at http://link.aip.org/link/?ja

    Diversity enabling equilibration: disorder and the ground state in artificial spin ice

    Full text link
    We report a novel approach to the question of whether and how the ground state can be achieved in square artificial spin ices where frustration is incomplete. We identify two types of disorder: quenched disorder in the island response to fields and disorder in the sequence of driving fields. Numerical simulations show that quenched disorder can lead to final states with lower energy, and disorder in the driving fields always lowers the final energy attained by the system. We use a network picture to understand these two effects: disorder in island responses creates new dynamical pathways, and disorder in driving fields allows more pathways to be followed.Comment: 5 pages, 5 figure

    Vertex dynamics in finite two dimensional square spin ices

    Full text link
    Local magnetic ordering in artificial spin ices is discussed from the point of view of how geometrical frustration controls dynamics and the approach to steady state. We discuss the possibility of using a particle picture based on vertex configurations to interpret time evolution of magnetic configurations. Analysis of possible vertex processes allows us to anticipate different behaviors for open and closed edges and the existence of different field regimes. Numerical simulations confirm these results and also demonstrate the importance of correlations and long range interactions in understanding particle population evolution. We also show that a mean field model of vertex dynamics gives important insights into finite size effects.Comment: 4 pages, 4 figures; v2: minor changes to text and figures. Accepted to Phys. Rev. Let

    Thermal stability of metastable magnetic skyrmions: Entropic narrowing and significance of internal eigenmodes

    Get PDF
    We compute annihilation rates of metastable magnetic skyrmions using a form of Langer's theory in the intermediate-to-high damping (IHD) regime. For a N\'eel skyrmion, a Bloch skyrmion, and an antiskyrmion, we look at two possible paths to annihilation: collapse and escape through a boundary. We also study the effects of a curved vs. a flat boundary, a second skyrmion and a non-magnetic defect. We find that the skyrmion's internal modes play a dominant role in the thermally activated transitions compared to the spin-wave excitations and that the relative contribution of internal modes depends on the nature of the transition process. Our calculations for a small skyrmion stabilized at zero-field show that collapse on a defect is the most probable path. In the absence of a defect, the annihilation is largely dominated by escape mechanisms, even though in this case the activation energy is higher than that of collapse processes. Escape through a flat boundary is found more probable than through a curved boundary. The potential source of stability of metastable skyrmions is therefore found not to lie in high activation energies, nor in the dynamics at the transition state, but comes from entropic narrowing in the saddle point region which leads to lowered attempt frequencies. This narrowing effect is found to be primarily associated with the skyrmion's internal modes.Comment: 14 pages, 9 figure

    Effect of weak disorder on the ground state of uniaxial dipolar spin systems in the upper critical dimension

    Full text link
    Extensive Monte Carlo simulations are used to investigate the stability of the ferromagnetic ground state in three-dimensional systems of Ising dipoles with added quenched disorder. These systems model the collective ferromagnetic order observed in various systems with dipolar long-range interactions. The uniaxial dipolar spins are arranged on a face-centred cubic lattice with periodic boundary conditions. Finite-size scaling relations for the pure dipolar ferromagnetic system are derived by a renormalisation group calculation. These functions include logarithmic corrections to the expected mean field behaviour since the system is in its upper critical dimension. Scaled data confirm the validity of the finite-size scaling description and results are compared with subsequent analysis of weakly disordered systems. A disorder-temperature phase diagram displays the preservation of the ferromagnetic ground state with the addition of small amounts of disorder, suggesting the irrelevance of weak disorder in these systems.Comment: 6 pages, 4 figures; proceedings of the 3rd NEXT-Sigma-Phi Conference, Kolymbari, Greece, August 200
    corecore