16 research outputs found

    Unique Sex-Based Approach Identifies Transcriptomic Biomarkers Associated with Non-Syndromic Craniosynostosis

    Get PDF
    Background The premature fusion of one cranial suture, also referred to as non-syndromic craniosynostosis, most commonly involves premature fusion of the sagittal, coronal, or metopic sutures, in that order. Population-based epidemiological studies have found that the birth prevalence of single-suture craniosynostosis is both suture- and sex-dependent. Methods Transcriptomic data from 199 individuals with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic (n = 49) synostosis were compared against a control population (n = 50) to identify transcripts accounting for the different sex-based frequencies observed in this disease. Results Differential sex-based gene expression was classified as either gained (divergent) or lost (convergent) in affected individuals to identify transcripts related to disease predilection. Divergent expression was dependent on synostosis sub-type, and was extensive in metopic craniosynostosis specifically. Convergent microarray-based expression was independent of synostosis sub-type, with convergent expression of FBN2, IGF2BP3, PDE1C and TINAGL1 being the most robust across all synostosis sub-types. Conclusions Analysis of sex-based gene expression followed by validation by qRT-PCR identified that concurrent upregulation of FBN2 and IGF2BP3 , and downregulation of TINAGL1 in craniosynostosis cases were all associated with increased RUNX2 expression and may represent a transcriptomic signature that can be used to characterize a subset of single-suture craniosynostosis cases

    Differential Expression of Extracellular Matrix-Mediated Pathways in Single-Suture Craniosynostosis

    Get PDF
    Craniosynostosis is a disease defined by premature fusion of one or more cranial sutures. The mechanistic pathology of single-suture craniosynostosis is complex and while a number of genetic biomarkers and environmental predispositions have been identified, in many cases the causes remain controversial and inconclusive. In this study, gene expression data from 199 patients with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic (n = 49) synostosis are compared against both a control population (n = 50), as well as each other. After controlling for variables contributing to potential bias, FGF7, SFRP4, and VCAM1 emerged as genes associated with single-suture craniosynostosis due to their significantly large changes in gene expression compared to the control population. Pathway analysis implicated focal adhesion and extracellular matrix (ECM)-receptor interaction as differentially regulated gene networks when comparing all cases of single-suture synostosis and controls. Lastly, overall gene expression was found to be highly conserved between coronal and metopic cases, as evidenced by the fact that WNT2 and IGFBP2 were the only genes differentially regulated to a significantly large extent in a direct comparison. The identification of genes and gene networks associated with Fgf/Igf/Wnt signaling and ECM-mediated focal adhesion not only support the involvement of biomarkers previously reported to be related to craniosynostosis, but also introduce novel transcripts and pathways that may play critical roles in its pathogenesis

    TAMH: A Useful In Vitro Model for Assessing Hepatotoxic Mechanisms

    No full text
    In vitro models for hepatotoxicity can be useful tools to predict in vivo responses. In this review, we discuss the use of the transforming growth factor-α transgenic mouse hepatocyte (TAMH) cell line, which is an attractive model to study drug-induced liver injury due to its ability to retain a stable phenotype and express drug-metabolizing enzymes. Hepatotoxicity involves damage to the liver and is often associated with chemical exposure. Since the liver is a major site for drug metabolism, drug-induced liver injury is a serious health concern for certain agents. At the molecular level, various mechanisms may protect or harm the liver during drug-induced hepatocellular injury including signaling pathways and endogenous factors (e.g., Bcl-2, GSH, Nrf2, or MAPK). The interplay between these and other pathways in the hepatocyte can change upon drug or drug metabolite exposure leading to intracellular stress and eventually cell death and liver injury. This review focuses on mechanistic studies investigating drug-induced toxicity in the TAMH line and how alterations to hepatotoxic mechanisms in this model relate to the in vivo situation. The agents discussed herein include acetaminophen (APAP), tetrafluoroethylcysteine (TFEC), flutamide, PD0325901, lapatinib, and flupirtine

    Differential Regulation of Mitogen-Activated Protein Kinase Pathways by Acetaminophen and Its Nonhepatotoxic Regioisomer 3′-Hydroxyacetanilide in TAMH Cells

    No full text
    Acetaminophen (APAP), a widely used analgesic and antipyretic that is considered to be relatively safe at recommended doses, is the leading cause of drug-induced liver failure in the United States. 3′-Hydroxyacetanilide (AMAP), a regioisomer of APAP, is useful as a comparative tool for studying APAP-induced toxicity because it is nontoxic relative to APAP. Transforming growth factor-alpha transgenic mouse hepatocytes were treated with both isomers to investigate mitogen-activated protein kinase (MAPK) cascades in order to differentiate their toxicological outcomes. Posttranslational modifications of MAPK signaling were assessed using immunoblotting and Bioplex technology, whereas gene expression changes were measured using Affymetrix Mouse Gene 1.0 ST arrays. APAP treatment led to higher levels of glutathione depletion at 6 and 24 h compared with AMAP in mitochondria. Glutathione depletion was preceded by increased levels of c-Jun N-terminal kinase (JNK) phosphorylation at 2 and 6 h after APAP treatment compared with AMAP, whereas AMAP treatment led to increased extracellular signal–regulated protein kinase (ERK) phosphorylation at 2 and 6 h compared with APAP. Furthermore, APAP treatment significantly upregulated jun oncogene (c-Jun) gene expression, which was confirmed by Western blotting for both the phosphorylated and the nonphosphorylated forms of c-Jun protein. Transfection with JNK siRNA attenuated APAP toxicity after 24 h, suggesting that higher levels of APAP-induced activation of JNK were related to higher rates of cell death. In summary, genomic regulation of MAPK-related transcription factors coupled with posttranslational activation of their upstream kinases is critical in differentiating the toxicities of APAP and AMAP

    Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6

    Get PDF
    The mechanism by which acetaminophen (APAP) causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD) compared to male C57BL/6 mice in order to identify the cause(s) of sensitivity. Furthermore, we use mice that are either heterozygous (HZ) or null (KO) for glutamate cysteine ligase modifier subunit (Gclm), in order to titrate the toxicity relative to wild-type (WT) mice. Gclm is important for efficient de novo synthesis of glutathione (GSH). APAP (300 mg/kg, ip) or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP–protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen

    Natural Products That Target the Arginase in Leishmania Parasites Hold Therapeutic Promise

    No full text
    Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania in rodent infectivity studies. Here, we review research on these natural products with a focus on their promise for the development of treatment strategies as well as unique structural and pharmacokinetic/pharmacodynamic features of the most promising agents

    Natural Products That Target the Arginase in <i>Leishmania</i> Parasites Hold Therapeutic Promise

    No full text
    Parasites of the genus Leishmania cause a variety of devastating and often fatal diseases in humans worldwide. Because a vaccine is not available and the currently small number of existing drugs are less than ideal due to lack of specificity and emerging drug resistance, the need for new therapeutic strategies is urgent. Natural products and their derivatives are being used and explored as therapeutics and interest in developing such products as antileishmanials is high. The enzyme arginase, the first enzyme of the polyamine biosynthetic pathway in Leishmania, has emerged as a potential therapeutic target. The flavonols quercetin and fisetin, green tea flavanols such as catechin (C), epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin-3-gallate (EGCG), and cinnamic acid derivates such as caffeic acid inhibit the leishmanial enzyme and modulate the host’s immune response toward parasite defense while showing little toxicity to the host. Quercetin, EGCG, gallic acid, caffeic acid, and rosmarinic acid have proven to be effective against Leishmania in rodent infectivity studies. Here, we review research on these natural products with a focus on their promise for the development of treatment strategies as well as unique structural and pharmacokinetic/pharmacodynamic features of the most promising agents
    corecore