890 research outputs found

    Generating Schr\"{o}dinger-cat states in momentum and internal-state space from Bose-Einstein condensates with repulsive interactions

    Full text link
    Resonant Raman coupling between internal levels induced by continuous illumination of non-collinear laser beams can create double-well momentum-space potentials for multi-level ``periodically-dressed'' atoms. We develop an approximate many-body formalism for a weakly interacting, trapped periodically-dressed Bose gas which illustrates how a tunable exchange interaction yields correlated many-body ground states. In contrast to the case of a position-space double well, the ground state of stable periodically-dressed Bose gases with repulsive interactions tends toward a Schr\"{o}dinger cat state in the regime where interactions dominate the momentum-space tunnelling induced by the external trapping potential. The dependence of the momentum-space tunnelling and exchange interaction on experimental parameters is derived. We discuss how real-time control of experimental parameters can be used to create Schr\"{o}dinger cat states either between momentum or internal states, and how these states could be dynamically controlled towards highly sensitive interferometry and frequency metrology.Comment: 7 pages, 3 figures. Submitted to PR

    Kinetic theory and dynamic structure factor of a condensate in the random phase approximation

    Full text link
    We present the microscopic kinetic theory of a homogeneous dilute Bose condensed gas in the generalized random phase approximation (GRPA), which satisfies the following requirements: 1) the mass, momentum and energy conservation laws; 2) the H-theorem; 3) the superfluidity property and 4) the recovery of the Bogoliubov theory at zero temperature \cite{condenson}. In this approach, the condensate influences the binary collisional process between the two normal atoms, in the sense that their interaction force results from the mediation of a Bogoliubov collective excitation traveling throughout the condensate. Furthermore, as long as the Bose gas is stable, no collision happens between condensed and normal atoms. In this paper, we show how the kinetic theory in the GRPA allows to calculate the dynamic structure factor at finite temperature and when the normal and superfluid are in a relative motion. The obtained spectrum for this factor provides a prediction which, compared to the experimental results, allows to validate the GRPA. PACS numbers:03.75.Hh, 03.75.Kk, 05.30.-dComment: 6 pages, 1 figures, QFS2004 conferenc

    Spinor Dynamics in an Antiferromagnetic Spin-1 Condensate

    Full text link
    We observe coherent spin oscillations in an antiferromagnetic spin-1 Bose-Einstein condensate of sodium. The variation of the spin oscillations with magnetic field shows a clear signature of nonlinearity, in agreement with theory, which also predicts anharmonic oscillations near a critical magnetic field. Measurements of the magnetic phase diagram agree with predictions made in the approximation of a single spatial mode. The oscillation period yields the best measurement to date of the sodium spin-dependent interaction coefficient, determining that the difference between the sodium spin-dependent s-wave scattering lengths af=2−af=0a_{f=2}-a_{f=0} is 2.47±0.272.47\pm0.27 Bohr radii.Comment: 5 pages, 2 figures. Changes: added reference, minor correction

    Exotic magnetic orders for high spin ultracold fermions

    Full text link
    We study Hubbard models for ultracold bosonic or fermionic atoms loaded into an optical lattice. The atoms carry a high spin F>1/2F>1/2, and interact on site via strong repulsive Van der Waals forces. Making convenient rearrangements of the interaction terms, and exploiting their symmetry properties, we derive low energy effective models with nearest-neighbor interactions, and their properties. We apply our method to F=3/2F=3/2, and 5/2 fermions on two-dimensional square lattice at quarter, and 1/6 fillings, respectively, and investigate mean-field equations for repulsive couplings. We find for F=3/2F=3/2 fermions that the plaquette state appearing in the highly symmetric SU(4) case does not require fine tuning, and is stable in an extended region of the phase diagram. This phase competes with an SU(2) flux state, that is always suppressed for repulsive interactions in absence of external magnetic field. The SU(2) flux state has, however, lower energy than the plaquette phase, and stabilizes in the presence of weak applied magnetic field. For F=5/2F=5/2 fermions a similar SU(2) plaquette phase is found to be the ground state without external magnetic field.Comment: final version, 6 pages, 4 figures, epl forma

    From multimode to monomode guided atom lasers: an entropic analysis

    Full text link
    We have experimentally demonstrated a high level of control of the mode populations of guided atom lasers (GALs) by showing that the entropy per particle of an optically GAL, and the one of the trapped Bose Einstein condensate (BEC) from which it has been produced are the same. The BEC is prepared in a crossed beam optical dipole trap. We have achieved isentropic outcoupling for both magnetic and optical schemes. We can prepare GAL in a nearly pure monomode regime (85 % in the ground state). Furthermore, optical outcoupling enables the production of spinor guided atom lasers and opens the possibility to tailor their polarization

    Controlling ultracold atoms in multi-band optical lattices for simulation of Kondo physics

    Full text link
    We show that ultracold atoms can be controlled in multi-band optical lattices through spatially periodic Raman pulses for investigation of a class of strongly correlated physics related to the Kondo problem. The underlying dynamics of this system is described by a spin-dependent fermionic or bosonic Kondo-Hubbard lattice model even if we have only spin-independent atomic collision interaction. We solve the bosonic Kondo-Hubbard lattice model through a mean-field approximation, and the result shows a clear phase transition from the ferromagnetic superfluid to the Kondo-signet insulator at the integer filling.Comment: 4 pages, 2 figure

    Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances

    Full text link
    The properties of Bose-Einstein condensed gases can be strongly altered by tuning the external magnetic field near a Feshbach resonance. Feshbach resonances affect elastic collisions and lead to the observed modification of the scattering length. However, as we report here, this is accompanied by a strong increase in the rate of inelastic collisions. The observed three-body loss rate in a sodium Bose-Einstein condensation increased when the scattering length was tuned to both larger or smaller values than the off-resonant value. This observation and the maximum measured increase of the loss rate by several orders of magnitude are not accounted for by theoretical treatments. The strong losses impose severe limitations for using Feshbach resonances to tune the properties of Bose-Einstein condensates. A new Feshbach resonance in sodium at 1195 G was observed.Comment: 4 pages, 3 figure
    • 

    corecore