21 research outputs found

    ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches

    Get PDF
    Contains fulltext : 174757.pdf (publisher's version ) (Open Access)As a result of the association of a common polymorphism (rs2231142, Q141K) in the ATP-binding cassette G2 (ABCG2) transporter with serum urate concentration in a genome-wide association study, it was revealed that ABCG2 is an important uric acid transporter. This review discusses the relevance of ABCG2 polymorphisms in gout, possible etiological mechanisms, and treatment approaches. The 141K ABCG2 urate-increasing variant causes instability in the nucleotide-binding domain, leading to decreased surface expression and function. Trafficking of the protein to the cell membrane is altered, and instead, there is an increased ubiquitin-mediated proteasomal degradation of the variant protein as well as sequestration into aggresomes. In humans, this leads to decreased uric acid excretion through both the kidney and the gut with the potential for a subsequent compensatory increase in renal urinary excretion. Not only does the 141K polymorphism in ABCG2 lead to hyperuricemia through renal overload and renal underexcretion, but emerging evidence indicates that it also increases the risk of acute gout in the presence of hyperuricemia, early onset of gout, tophi formation, and a poor response to allopurinol. In addition, there is some evidence that ABCG2 dysfunction may promote renal dysfunction in chronic kidney disease patients, increase systemic inflammatory responses, and decrease cellular autophagic responses to stress. These results suggest multiple benefits in restoring ABCG2 function. It has been shown that decreased ABCG2 141K surface expression and function can be restored with colchicine and other small molecule correctors. However, caution should be exercised in any application of these approaches given the role of surface ABCG2 in drug resistance

    Gout

    No full text
    Gout is a chronic disease caused by monosodium urate (MSU) crystal deposition. Gout typically presents as an acute, self-limiting inflammatory monoarthritis that affects the joints of the lower limb. Elevated serum urate level (hyperuricaemia) is the major risk factor for MSU crystal deposition and development of gout. Although traditionally considered a disorder of purine metabolism, altered urate transport, both in the gut and the kidneys, has a key role in the pathogenesis of hyperuricaemia. Anti-inflammatory agents, such corticosteroids, NSAIDs and colchicine, are widely used for the treatment of gout flare; recognition of the importance of NLRP3 inflammasome activation and bioactive IL-1beta release in initiation of the gout flare has led to the development of anti-IL-1beta biological therapy for gout flares. Sustained reduction in serum urate levels using urate-lowering therapy is vital in the long-term management of gout, which aims to dissolve MSU crystals, suppress gout flares and resolve tophi. Allopurinol is the first-line urate-lowering therapy and should be started at a low dose, with gradual dose escalation. Low-dose anti-inflammatory therapies can reduce gout flares during initiation of urate-lowering therapy. Models of care, such as nurse-led strategies that focus on patient engagement and education, substantially improve clinical outcomes and now represent best practice for gout management

    Clinical Utility of Multi-Energy Spectral Photon-Counting Computed Tomography in Crystal Arthritis.

    No full text
    To determine whether novel multi-energy spectral photon-counting computed tomography (SPCCT) imaging can detect and differentiate between monosodium urate (MSU), calcium pyrophosphate (CPP), and hydroxyapatite (HA) crystal deposits ex vivo. A finger with a subcutaneous gouty tophus and a calcified knee meniscus excised at the time of surgery were obtained. The finger was imaged using plain x-ray, dual-energy CT (DECT), and multi-energy SPCCT. Plain x-ray and multi-energy SPCCT images of the meniscus were acquired. For validation purposes, samples of the crystals were obtained from the tophus and meniscus, and examined by polarized light microscopy and/or x-ray diffraction. As further validation, synthetic crystal suspensions of MSU, CPP, and HA were scanned using multi-energy SPCCT. Plain x-ray of the gouty finger revealed bone erosions with overhanging edges. DECT and multi-energy SPCCT both showed MSU crystal deposits; SPCCT was able to show finer detail. Plain x-ray of the calcified meniscus showed chondrocalcinosis consistent with CPP, while SPCCT showed and differentiated CPP and HA. Multi-energy SPCCT can not only detect, differentiate, and quantify MSU crystal deposits in a gouty finger ex vivo, but also specifically detect, identify, and quantify CPP within an osteoarthritic meniscus, and distinguish them from HA crystal deposits. There is potential for multi-energy SPCCT to become useful in the diagnosis of crystal arthropathies

    Association of low-affinity FC gamma receptor 3B (FCGR3B) copy number variation with rheumatoid arthritis in Caucasian subjects

    No full text
    Aim: There is increasing evidence that gene copy-number variation influences phenotypic variation. The low-affinity Fc receptor 3B (FCGR3B) is a copy-number polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMN). Given the importance of PMN in the pathophysiology of rheumatoid arthritis (RA), and recent evidence that low FCGR3B copy-number is a risk factor for systemic but not organ-specific autoimmune disease, we hypothesised that FCGR3B gene dosage influences susceptibility to RA. Methods: We measured FCGR3B copy-number in 1749 RA cases from New Zealand (NZ) the United Kingdom (UK) and Holland, and a total of 1322 controls. All subjects were ancestrally Caucasian. Results: A copy number of less than 2 was a risk factor for RA in the two larger NZ and Netherlands cohorts (OR = 1.52 [0.99-2.31], p = 0.05; OR = 2.27 [1.56-3.30], p = 1.8 × 10-5, respectively). Meta-analysis with the UK cohort yielded strong evidence for association of CN <2 with RA (OR = 1.83 [1.40-2.38], p = 7.0 × 10-6). There was an inverse linear relationship between FCGR3B CN and risk of RA (p = 1 × 10-4). Conclusions: FCGR3B CN is inversely related to susceptibility to RA in the Caucasian cohorts examined in this study. This association is similar to that previously observed in systemic lupus erythematosus, suggesting overlap in pathophysiology of disease. Whether FCGR3B deletion is etiological or acts as a proxy marker for another biologically-relevant variant will require more detailed examination of genetic variation with the FCGR gene cluster

    Association of variation in Fcgamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples.

    Get PDF
    Contains fulltext : 88382.pdf (publisher's version ) (Closed access)OBJECTIVE: There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fcgamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMNs). Given recent evidence that low FCGR3B CN is a risk factor for systemic but not organ-specific autoimmune disease and the potential importance of PMN in the pathophysiology of rheumatoid arthritis (RA), the authors hypothesised that FCGR3B gene dosage influences susceptibility to RA. METHODS: FCGR3B CN was measured in 643 cases of RA and 461 controls from New Zealand (NZ), with follow-up analysis in 768 cases and 702 controls from the Netherlands and 250 cases and 211 controls from the UK. All subjects were of Caucasian ancestry. RESULTS: Significant evidence for an association between CN <2 and RA was observed in the Dutch cohort (OR 2.01 (95% CI 1.37 to 2.94), p=3 x 10-4) but not in the two smaller cohorts (OR 1.45 (95% CI 0.92 to 2.26), p=0.11 and OR 1.33 (95% CI 0.58 to 3.02), p=0.50 for the NZ and UK populations, respectively). The association was evident in a meta-analysis which included a previously published Caucasian sample set (OR 1.67 (95% CI 1.28 to 2.17), p=1.2 x 10-4). CONCLUSIONS: One possible mechanism to explain the association between reduced FCGR3B CN and RA is the reduced clearance of immune complex during inflammation. However, it is not known whether the association between RA and FCGR3B CN is aetiological or acts as a proxy marker for another biologically relevant variant. More detailed examination of genetic variation within the FCGR gene cluster is required.1 september 201

    Towards development of core domain sets for short term and long term studies of calcium pyrophosphate crystal deposition (CPPD) disease: A framework paper by the OMERACT CPPD working group.

    No full text
    Although calcium pyrophosphate deposition (CPPD) is common, there are no published outcome domains or validated measurement instruments for CPPD studies. In this paper, we describe the framework for development of the Outcome Measures in Rheumatology (OMERACT) CPPD Core Domain Sets. The OMERACT CPPD working group performed a scoping literature review and qualitative interview study. Generated outcomes were presented at the 2020 OMERACT CPPD virtual Special Interest Group (SIG) meeting with discussion focused on whether different core domain sets should be developed for different calcium pyrophosphate deposition (CPPD) clinical presentations and how the future CPPD Core Domain Set may overlap with already established osteoarthritis (OA) domains. These discussions informed development of a future work plan for development of the OMERACT CPPD Core Domain Sets. Domains identified from a scoping review of 112 studies and a qualitative interview study of 36 people (28 patients with CPPD, 7 health care professionals, one stakeholder) were mapped to core areas of OMERACT Filter 2.1. The majority of SIG participants agreed there was need to develop separate core domain sets for "short term" and "long term" studies of CPPD. Although CPPD + OA is common and core domain sets for OA have been established, participants agreed that existing OA core domain sets should not influence the development of OMERACT core domain sets for CPPD. Prioritization exercises (using Delphi methodology) will consider 40 potential domains for short term studies of CPPD and 47 potential domains for long term studies of CPPD. Separate OMERACT CPPD Core Domain Sets will be developed for "short term" studies for an individual flare of acute CPP crystal arthritis and for "long term" studies that may include participants with any clinical presentation of CPPD (acute CPP crystal arthritis, chronic CPP crystal inflammatory arthritis, and/or CPPD + OA)

    Replication of association of the apolipoprotein A1-C3-A4 gene cluster with the risk of gout.

    No full text
    OBJECTIVE: Gout is associated with dyslipidaemia. Association of the apolipoprotein A1-C3-A4 gene cluster with gout has previously been reported in a small study. To investigate a possible causal role for this locus in gout, we tested the association of genetic variants from APOA1 (rs670) and APOC3 (rs5128) with gout. METHODS: We studied data for 2452 controls and 2690 clinically ascertained gout cases of European and New Zealand Polynesian (Māori and Pacific) ancestry. Data were also used from the publicly available Atherosclerosis Risk in Communities study (n = 5367) and the Framingham Heart Study (n = 2984). Multivariate adjusted logistic and linear regression was used to test the association of single-nucleotide polymorphisms with gout risk, serum urate, triglyceride and high-density lipoprotein cholesterol (HDL-C). RESULTS: In Polynesians, the T-allele of rs670 (APOA1) increased (odds ratio, OR = 1.53, P = 4.9 × 10(-6)) and the G-allele of rs5128 (APOC3) decreased the risk of gout (OR = 0.86, P = 0.026). In Europeans, there was a strong trend to a risk effect of the T-allele for rs670 (OR = 1.11, P = 0.055), with a significant protective effect of the G-allele for rs5128 being observed after adjustment for triglycerides and HDL-C (OR = 0.81, P = 0.039). The effect at rs5128 was specific to males in both Europeans and Polynesians. Association in Polynesians was independent of any effect of rs670 and rs5128 on triglyceride and HDL-C levels. There was no evidence for association of either single-nucleotide polymorphism with serum urate levels (P ⩾ 0.10). CONCLUSION: Our data, replicating a previous study, supports the hypothesis that the apolipoprotein A1-C3-A4 gene cluster plays a causal role in gout
    corecore