1,982 research outputs found

    Correlated random fields in dielectric and spin glasses

    Full text link
    Both orientational glasses and dipolar glasses possess an intrinsic random field, coming from the volume difference between impurity and host ions. We show this suppresses the glass transition, causing instead a crossover to the low TT phase. Moreover the random field is correlated with the inter-impurity interactions, and has a broad distribution. This leads to a peculiar variant of the Imry-Ma mechanism, with 'domains' of impurities oriented by a few frozen pairs. These domains are small: predictions of domain size are given for specific systems, and their possible experimental verification is outlined. In magnetic glasses in zero field the glass transition survives, because the random fields are disallowed by time-reversal symmetry; applying a magnetic field then generates random fields, and suppresses the spin glass transition.Comment: minor modifications, final versio

    Decoherence and Quantum Walks: anomalous diffusion and ballistic tails

    Get PDF
    The common perception is that strong coupling to the environment will always render the evolution of the system density matrix quasi-classical (in fact, diffusive) in the long time limit. We present here a counter-example, in which a particle makes quantum transitions between the sites of a d-dimensional hypercubic lattice whilst strongly coupled to a bath of two-level systems which 'record' the transitions. The long-time evolution of an initial wave packet is found to be most unusual: the mean square displacement of the particle density matrix shows long-range ballitic behaviour, but simultaneously a kind of weakly-localised behaviour near the origin. This result may have important implications for the design of quantum computing algorithms, since it describes a class of quantum walks.Comment: 4 pages, 1 figur

    Method of Collective Degrees of Freedom in Spin Coherent State Path Integral

    Full text link
    We present a detailed field theoretic description of those collective degrees of freedom (CDF) which are relevant to study macroscopic quantum dynamics of a quasi-one-dimensional ferromagnetic domain wall. We apply spin coherent state path integral (SCSPI) in the proper discrete time formalism (a) to extract the relevant CDF's, namely, the center position and the chirality of the domain wall, which originate from the translation and the rotation invariances of the system in question, and (b) to derive effective action for the CDF's by elimination of environmental zero-modes with the help of the {\it Faddeev-Popov technique}. The resulting effective action turns out to be such that both the center position and the chirality can be formally described by boson coherent state path integral. However, this is only formal; there is a subtle departure from the latter.Comment: 10 pages, 1 figur

    On the Stability and Single-Particle Properties of Bosonized Fermi Liquids

    Full text link
    We study the stability and single-particle properties of Fermi liquids in spatial dimensions greater than one via bosonization. For smooth non-singular Fermi liquid interactions we obtain Shankar's renormalization- group flows and reproduce well known results for quasi-particle lifetimes. We demonstrate by explicit calculation that spin-charge separation does not occur when the Fermi liquid interactions are regular. We also explore the relationship between quantized bosonic excitations and zero sound modes and present a concise derivation of both the spin and the charge collective mode equations. Finally we discuss some aspects of singular Fermi liquid interactions.Comment: 13 pages plus three postscript figures appended; RevTex 3.0; BUP-JBM-

    Quantum Relaxation of Magnetisation in Magnetic Particles

    Full text link
    At temperatures below the magnetic anisotropy energy, monodomain magnetic systems (small particles, nanomagnetic devices, etc.) must relax quantum mechanically. This quantum relaxation must be mediated by the coupling to both nuclear spins and phonons (and electrons if either particle or substrate is conducting. We analyze the effect of each of these couplings, and then combine them. Conducting systems can be modelled by a "giant Kondo" Hamiltonian, with nuclear spins added in as well. At low temperatures, even microscopic particles on a conducting substrate (containing only 10−5010-50 spins) will have their magnetisation frozen over millenia by a combination of electronic dissipation and the "degeneracy blocking" caused by nuclear spins. Raising the temperature leads to a sudden unblocking of the spin dynamics at a well defined temperature. Insulating systems are quite different. The relaxation is strongly enhanced by the coupling to nuclear spins. At short times the magnetisation of an ensemble of particles relaxes logarithmically in time, after an initial very fast decay; this relaxation proceeds entirely via the nuclear spins. At longer times phonons take over, but the decay rate is still governed by the temperature-dependent nuclear bias field acting on the particles - decay may be exponential or power-law depending on the temperature. The most surprising feature of the results is the pivotal role played by the nuclear spins. The results are relevant to any experiments on magnetic particles in which interparticle dipolar interactions are unimportant. They are also relevant to future magnetic device technology.Comment: 30 pages, RevTex, e:mail , Submitted to J.Low Temp.Phys. on 1 Nov. 199

    One-Particle Excitation of the Two-Dimensional Hubbard Model

    Full text link
    The real part of the self-energy of interacting two-dimensional electrons has been calculated in the t-matrix approximation. It is shown that the forward scattering results in an anomalous term leading to the vanishing renormalization factor of the one-particle Green function, which is a non-perturbative effect of the interaction U. The present result is a microscopic demonstration of the claim by Anderson based on the conventional many-body theory. The effect of the damping of the interacting electrons, which has been ignored in reaching above conclusion, has been briefly discussed.Comment: 7 pages, LaTeX, 1 figure, uses jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 3 (1997

    Sharp transition for single polarons in the one-dimensional Su-Schrieffer-Heeger model

    Get PDF
    We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling strength λ\lambda, in all models where this coupling depends only on phonon momentum qq. In the SSH model the coupling also depends on the electron momentum kk; we find it has a sharp transition, at a critical coupling strength λc\lambda_c, between states with zero and nonzero momentum of the ground state. All other properties of the polaron are also singular at λ=λc\lambda = \lambda_c, except the average number of phonons in the polaronic cloud. This result is representative of all polarons with coupling depending on kk and qq, and will have important experimental consequences (eg., in ARPES and conductivity experiments)

    Quasi-Particles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight

    Full text link
    It is shown that the energy (ε)(\varepsilon) and momentum (k)(k) dependences of the electron self-energy function Σ(k,ε+i0)≡ΣR(k,ε) \Sigma (k, \varepsilon + i0) \equiv \Sigma^{R}(k, \varepsilon) are, ImΣR(k,ε)=−aε2∣ε−ξk∣−γ(k) {\rm Im} \Sigma^{R} (k, \varepsilon) = -a\varepsilon^{2}|\varepsilon - \xi_{k}|^{- \gamma (k)} where aa is some constant, ξk=ε(k)−μ,ε(k)\xi_{k} = \varepsilon(k)-\mu, \varepsilon(k) being the band energy, and the critical exponent γ(k) \gamma(k) , which depends on the curvature of the Fermi surface at k k , satisfies, 0≤γ(k)≤1 0 \leq \gamma(k) \leq 1 . This leads to a new type of electron liquid, which is the Fermi liquid in the limit of ε,ξk→0 \varepsilon, \xi_{k} \rightarrow 0 but for ξk≠0 \xi_{k} \neq 0 has a split one-particle spectra as in the Tomonaga-Luttinger liquid.Comment: 8 pages (LaTeX) 4 figures available upon request will be sent by air mail. KomabaCM-preprint-O
    • …
    corecore