1,426 research outputs found

    Method of Collective Degrees of Freedom in Spin Coherent State Path Integral

    Full text link
    We present a detailed field theoretic description of those collective degrees of freedom (CDF) which are relevant to study macroscopic quantum dynamics of a quasi-one-dimensional ferromagnetic domain wall. We apply spin coherent state path integral (SCSPI) in the proper discrete time formalism (a) to extract the relevant CDF's, namely, the center position and the chirality of the domain wall, which originate from the translation and the rotation invariances of the system in question, and (b) to derive effective action for the CDF's by elimination of environmental zero-modes with the help of the {\it Faddeev-Popov technique}. The resulting effective action turns out to be such that both the center position and the chirality can be formally described by boson coherent state path integral. However, this is only formal; there is a subtle departure from the latter.Comment: 10 pages, 1 figur

    What are the interactions in quantum glasses?

    Full text link
    The form of the low-temperature interactions between defects in neutral glasses is reconsidered. We analyse the case where the defects can be modelled either as simple 2-level tunneling systems, or tunneling rotational impurities. The coupling to strain fields is determined up to 2nd order in the displacement field. It is shown that the linear coupling generates not only the usual 1/r31/r^3 Ising-like interaction between the rotational tunneling defect modes, which cause them to freeze around a temperature TGT_G, but also a random field term. At lower temperatures the inversion symmetric tunneling modes are still active - however the coupling of these to the frozen rotational modes, now via the 2nd-order coupling to phonons, generates another random field term acting on the inversion symmetric modes (as well as shorter-range 1/r51/r^5 interactions between them). Detailed expressions for all these couplings are given.Comment: 12 pages, 2 figures. Minor modifications, published versio

    Entanglement Sharing and Decoherence in the Spin-Bath

    Get PDF
    The monogamous nature of entanglement has been illustrated by the derivation of entanglement sharing inequalities - bounds on the amount of entanglement that can be shared amongst the various parts of a multipartite system. Motivated by recent studies of decoherence, we demonstrate an interesting manifestation of this phenomena that arises in system-environment models where there exists interactions between the modes or subsystems of the environment. We investigate this phenomena in the spin-bath environment, constructing an entanglement sharing inequality bounding the entanglement between a central spin and the environment in terms of the pairwise entanglement between individual bath spins. The relation of this result to decoherence will be illustrated using simplified system-bath models of decoherence.Comment: 5 pages, 1 figure v2: 6 pages 2 figures, additional example and reference

    Ab Initio Calculation of Impurity Effects in Copper Oxide Materials

    Full text link
    We describe a method for calculating, within density functional theory, the electronic structure associated with typical defects which substitute for Cu in the CuO2 planes of high-Tc superconducting materials. The focus is primarily on Bi2Sr2CaCu2O8, the material on which most STM measurements of impurity resonances in the superconducting state have been performed. The magnitudes of the effective potentials found for Zn, Ni and vacancies on the in-plane Cu sites in this host material are remarkably consistent with phenomenological fits of potential scattering models to STM resonance energies. The effective potential ranges are quite short, of order 1 A with weak long range tails, in contrast to some current models of extended potentials which attempt to fit STM data. For the case of Zn and Cu vacancies, the effective potentials are strongly repulsive, and states on the impurity site near the Fermi level are simply removed. The local density of states (LDOS) just above the impurity is nevertheless found to be a maximum in the case of Zn and a local minimum in case of the vacancy, in agreement with experiment. The Zn and Cu vacancy patterns are explained as due to the long-range tails of the effective impurity potential at the sample surface. The case of Ni is richer due to the Ni atom's strong hybridization with states near the Fermi level; in particular, the short range part of the potential is attractive, and the LDOS is found to vary rapidly with distance from the surface and from the impurity site. We propose that the current controversy surrounding the observed STM patterns can be resolved by properly accounting for the effective impurity potentials and wave-functions near the cuprate surface. Other aspects of the impurity states for all three species are discussed.Comment: 37 pp. pdf including figures, submitted to Phys. Rev.

    PS2 transfection of Murine Adenocarcinoma Cell line (410.4) enhances dispersed growth pattern in 3-D collagen gel

    Get PDF
    We describe the first model system employing human pS2 gene transfer and expression in a non-pS2-expressing cell line, mouse mammary adenocarcinoma 410.4, in order to analyse the potential effect of human trefoil peptide pS2 in glandular epithelium. Two selected clones, AA4 and AD4, were established and shown to have incorporated the pS2 cDNA sequence into the genome, express pS2 containing transcript and produce the pS2 peptide. When grown in 3-D collagen gels both transfectants show striking morphological changes compared to the vector control clone (VA5). VA5 forms large cohesive spherical aggregates with rare coarse spicular outgrowths, accompanied by prominent hyalinised extracellular matrix deposition. pS2 transfectants form poorly cohesive, stellate colonies with very little or no matrix deposition, radiating long cords composed of single elongated cells, an effect previously observed in other cell lines with hepatocyte growth factor. pS2 transfection had no demonstrable effect on proliferation and this is not a morphogenetic phenomenon, as tubulogenesis is not seen. Motility assays suggest that the pS2 \u27dispersant\u27 effect in collagen gels is due to an increase in cell motility. There were no measurable alterations in either E-cadherin expression or E-cadherin-dependent cell-cell aggregation. pS2 may play a role in maintenance and restitution of mucosal integrity by accelerating migration/dispersion

    Macroscopic Quantum Dynamics of a Free Domain Wall in a Ferromagnet

    Full text link
    We study macroscopic quantum dynamics of a free domain wall in a quasi-one-dimensional ferromagnet by use of the spin-coherent-state path integral in {\it discrete-time} formalism. Transition amplitudes between typical states are quantitatively discussed by use of {\it stationary-action approximation} with respect to collective degrees of freedom representing the center position and the chirality of the domain wall. It is shown that the chirality may be loosely said to be canonically conjugate to the center position; the latter moves with a speed depending on the former. It is clarified under what condition the center position can be regarded as an effective free-particle position, which exhibits the phenomenon of wave-packet spreading. We demonstrate, however, that in some case the non-linear character of the spin leads to such a dramatic phenomenon of a non-spreading wave packet as to completely invalidate the free-particle analogy. In the course of the discussion, we also point out various difficulties associated with the continuous-time formalism.Comment: 23 pages, REVTEX, 4 figures, submitted to Phys. Rev.

    Development of a novel bi-specific monoclonal antibody approach for tumour targeting

    Get PDF
    To overcome the disadvantages of bi-specific antibody methodologies in vivo, a novel antibody approach has been designed to improve tumour targeting and effector to target ratio. The technique involves biotinylated anti-CD3 Fab fragments and streptavidinylated anti-tumour monoclonal antibodies (mAbs) that can spontaneously form cross-links. We describe here a method for the direct cross-linking of sulphydryl-conjugated HMFG1 (anti-MUC1 mucin mAb) to streptavidin by sulphosuccinimidyl-4-(N-maleimidomethyl) cyclohexane- 1-carboxylate. Fab fragments generated by papain digestion of the 1452C11 antibody (anti-CD3 mAb without Fc to avoid peripheral activation of T-cells) were biotinylated with NHS-Iminobiotin. MUC1-transfected BALB/c breast cancer cell lines 413BCR and 425CCR and the parental cell line (410.4) were labelled with streptavidinylated mouse anti-MUC1 mucin mAb. BALB/c effector T-cells were separately labelled with biotinylated anti-CD3 Fab fragments (1452C11) and mixed with tumour cells in different effector to target ratios. Percentage of killing was assessed using the 51Cr cytotoxicity assay. Seventy per cent lysis was measured in the case of 413BCR (high MUC1 mucin expressor) and 40% in the case of 425CCR (low expressor) cell line. No lysis was apparent in the MUC1 negative cell line. These results demonstrate that the novel T-cell redirecting approach we have developed can produce effective immune lysis of target cells in vitro. © 1999 Cancer Research Campaig

    How to determine linear complexity and kk-error linear complexity in some classes of linear recurring sequences

    Get PDF
    Several fast algorithms for the determination of the linear complexity of dd-periodic sequences over a finite field \F_q, i.e. sequences with characteristic polynomial f(x)=xd−1f(x) = x^d-1, have been proposed in the literature. In this contribution fast algorithms for determining the linear complexity of binary sequences with characteristic polynomial f(x)=(x−1)df(x) = (x-1)^d for an arbitrary positive integer dd, and f(x)=(x2+x+1)2vf(x) = (x^2+x+1)^{2^v} are presented. The result is then utilized to establish a fast algorithm for determining the kk-error linear complexity of binary sequences with characteristic polynomial (x2+x+1)2v(x^2+x+1)^{2^v}

    On the Stability and Single-Particle Properties of Bosonized Fermi Liquids

    Full text link
    We study the stability and single-particle properties of Fermi liquids in spatial dimensions greater than one via bosonization. For smooth non-singular Fermi liquid interactions we obtain Shankar's renormalization- group flows and reproduce well known results for quasi-particle lifetimes. We demonstrate by explicit calculation that spin-charge separation does not occur when the Fermi liquid interactions are regular. We also explore the relationship between quantized bosonic excitations and zero sound modes and present a concise derivation of both the spin and the charge collective mode equations. Finally we discuss some aspects of singular Fermi liquid interactions.Comment: 13 pages plus three postscript figures appended; RevTex 3.0; BUP-JBM-
    • …
    corecore