7 research outputs found

    Mapping of citrullinated fibrinogen B-cell epitopes in rheumatoid arthritis by imaging surface plasmon resonance

    Get PDF
    Introduction Rheumatoid arthritis (RA) frequently involves the loss of tolerance to citrullinated antigens, which may play a role in pathogenicity. Citrullinated fibrinogen is commonly found in inflamed synovial tissue and is a frequent target of autoantibodies in RA patients. To obtain insight into the B-cell response to citrullinated fibrinogen in RA, its autoepitopes were systematically mapped using a new methodology. Methods Human fibrinogen was citrullinated in vitro by peptidylarginine deiminases (PAD), subjected to proteolysis and the resulting peptides were fractionated by ion exchange chromatography. The peptide composition of the citrullinated peptide-containing fractions was determined by high resolution tandem mass spectrometry. The recognition of these fractions by patient sera was subsequently analyzed by imaging surface plasmon resonance on microarrays. Results In total about two-thirds of the 81 arginines of human fibrinogen were found to be susceptible to citrullination by the human PAD2, the human PAD4 or the rabbit PAD2 enzymes. Citrullination sites were found in all three polypeptide chains of fibrinogen, although the α-chain appeared to contain most of them. The analysis of 98 anti-citrullinated protein antibody-positive RA sera using the new methodology allowed the identification of three major citrullinated epitope regions in human fibrinogen, two in the α- and one in the β-chain. Conclusions A comprehensive overview of citrullination sites in human fibrinogen was generated. The multiplex analysis of peptide fractions derived from a post-translationally modified protein, characterized by mass spectrometry, with patient sera provides a versatile system for mapping modified amino acid-containing epitopes. The citrullinated epitopes of human fibrinogen most efficiently recognized by RA autoantibodies are confined to three regions of its polypeptides

    Mapping of citrullinated fibrinogen B-cell epitopes in rheumatoid arthritis by imaging surface plasmon resonance

    No full text
    Introduction Rheumatoid arthritis (RA) frequently involves the loss of tolerance to citrullinated antigens, which may play a role in pathogenicity. Citrullinated fibrinogen is commonly found in inflamed synovial tissue and is a frequent target of autoantibodies in RA patients. To obtain insight into the B-cell response to citrullinated fibrinogen in RA, its autoepitopes were systematically mapped using a new methodology. Methods Human fibrinogen was citrullinated in vitro by peptidylarginine deiminases (PAD), subjected to proteolysis and the resulting peptides were fractionated by ion exchange chromatography. The peptide composition of the citrullinated peptide-containing fractions was determined by high resolution tandem mass spectrometry. The recognition of these fractions by patient sera was subsequently analyzed by imaging surface plasmon resonance on microarrays. Results In total about two-thirds of the 81 arginines of human fibrinogen were found to be susceptible to citrullination by the human PAD2, the human PAD4 or the rabbit PAD2 enzymes. Citrullination sites were found in all three polypeptide chains of fibrinogen, although the α-chain appeared to contain most of them. The analysis of 98 anti-citrullinated protein antibody-positive RA sera using the new methodology allowed the identification of three major citrullinated epitope regions in human fibrinogen, two in the α- and one in the β-chain. Conclusions A comprehensive overview of citrullination sites in human fibrinogen was generated. The multiplex analysis of peptide fractions derived from a post-translationally modified protein, characterized by mass spectrometry, with patient sera provides a versatile system for mapping modified amino acid-containing epitopes. The citrullinated epitopes of human fibrinogen most efficiently recognized by RA autoantibodies are confined to three regions of its polypeptides

    Epitope mapping of monoclonal antibodies: a comprehensive comparison of different technologies

    No full text
    ABSTRACTMonoclonal antibodies have become an important class of therapeutics in the last 30 years. Because the mechanism of action of therapeutic antibodies is intimately linked to their binding epitopes, identification of the epitope of an antibody to the antigen plays a central role during antibody drug development. The gold standard of epitope mapping, X-ray crystallography, requires a high degree of proficiency with no guarantee of success. Here, we evaluated six widely used alternative methods for epitope identification (peptide array, alanine scan, domain exchange, hydrogen-deuterium exchange, chemical cross-linking, and hydroxyl radical footprinting) in five antibody-antigen combinations (pembrolizumab+PD1, nivolumab+PD1, ipilimumab+CTLA4, tremelimumab+CTLA4, and MK-5890+CD27). The advantages and disadvantages of each technique are demonstrated by our data and practical advice on when and how to apply specific epitope mapping techniques during the drug development process is provided. Our results suggest chemical cross-linking most accurately identifies the epitope as defined by crystallography

    Disease specificity of autoantibodies to cytosolic 5'-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases.

    No full text
    OBJECTIVES: The diagnosis of inclusion body myositis (IBM) can be challenging as it can be difficult to clinically distinguish from other forms of myositis, particularly polymyositis (PM). Recent studies have shown frequent presence of autoantibodies directed against cytosolic 5’-nucleotidase 1A (cN-1A) in patients with IBM. We therefore, examined the autoantigenicity and disease-specificity of major epitopes of cN-1A in patients with sporadic IBM compared with healthy and disease controls. METHODS: Serum samples obtained from patients with IBM (n=238), polymyositis (PM) and dermatomyositis (DM) (n=185), other autoimmune diseases (n=246), other neuromuscular diseases (n=93) and healthy controls (n=35) were analysed for the presence of autoantibodies using immunodominant cN-1A peptide enzyme-linked immunosorbent assays (ELISAs). RESULTS: Autoantibodies directed against major epitopes of cN-1A were frequent in IBM patients (37%) but not in PM, DM or non-autoimmune neuromuscular diseases (<5%). Anti-cN-1A reactivity was also observed in some other autoimmune diseases, particularly Sjögren’s syndrome (SjS; 36%) and systemic lupus erythematosus (SLE; 20%). CONCLUSIONS: In summary, we found frequent anti-cN-1A autoantibodies in sera from IBM patients. Heterogeneity in reactivity with the three immunodominant epitopes indicates that serological assays should not be limited to a distinct epitope region. The similar reactivities observed for SjS and SLE demonstrate the need to further investigate whether distinct IBM-specific epitopes exist

    An alphavirus replicon-based vaccine expressing a stabilized Spike antigen induces protective immunity and prevents transmission of SARS-CoV-2 between cats

    Get PDF
    Early in the SARS-CoV-2 pandemic concerns were raised regarding infection of new animal hosts and the effect on viral epidemiology. Infection of other animals could be detrimental by causing clinical disease, allowing further mutations, and bares the risk for the establishment of a non-human reservoir. Cats were the first reported animals susceptible to natural and experimental infection with SARS-CoV-2. Given the concerns these findings raised, and the close contact between humans and cats, we aimed to develop a vaccine candidate that could reduce SARS-CoV-2 infection and in addition to prevent spread among cats. Here we report that a Replicon Particle (RP) vaccine based on Venezuelan equine encephalitis virus, known to be safe and efficacious in a variety of animal species, could induce neutralizing antibody responses in guinea pigs and cats. The design of the SARS-CoV-2 spike immunogen was critical in developing a strong neutralizing antibody response. Vaccination of cats was able to induce high neutralizing antibody responses, effective also against the SARS-CoV-2 B.1.1.7 variant. Interestingly, in contrast to control animals, the infectious virus could not be detected in oropharyngeal or nasal swabs of vaccinated cats after SARS-CoV-2 challenge. Correspondingly, the challenged control cats spread the virus to in-contact cats whereas the vaccinated cats did not transmit the virus. The results show that the RP vaccine induces protective immunity preventing SARS-CoV-2 infection and transmission. These data suggest that this RP vaccine could be a multi-species vaccine useful to prevent infection and spread to and between animals should that approach be required

    An alphavirus replicon-based vaccine expressing a stabilized Spike antigen induces protective immunity and prevents transmission of SARS-CoV-2 between cats

    No full text
    Early in the SARS-CoV-2 pandemic concerns were raised regarding infection of new animal hosts and the effect on viral epidemiology. Infection of other animals could be detrimental by causing clinical disease, allowing further mutations, and bares the risk for the establishment of a non-human reservoir. Cats were the first reported animals susceptible to natural and experimental infection with SARS-CoV-2. Given the concerns these findings raised, and the close contact between humans and cats, we aimed to develop a vaccine candidate that could reduce SARS-CoV-2 infection and in addition to prevent spread among cats. Here we report that a Replicon Particle (RP) vaccine based on Venezuelan equine encephalitis virus, known to be safe and efficacious in a variety of animal species, could induce neutralizing antibody responses in guinea pigs and cats. The design of the SARS-CoV-2 spike immunogen was critical in developing a strong neutralizing antibody response. Vaccination of cats was able to induce high neutralizing antibody responses, effective also against the SARS-CoV-2 B.1.1.7 variant. Interestingly, in contrast to control animals, the infectious virus could not be detected in oropharyngeal or nasal swabs of vaccinated cats after SARS-CoV-2 challenge. Correspondingly, the challenged control cats spread the virus to in-contact cats whereas the vaccinated cats did not transmit the virus. The results show that the RP vaccine induces protective immunity preventing SARS-CoV-2 infection and transmission. These data suggest that this RP vaccine could be a multi-species vaccine useful to prevent infection and spread to and between animals should that approach be required
    corecore