25 research outputs found

    Breakthrough infections with the SARS-CoV-2 omicron (B.1.1.529) variant in patients with immune-mediated inflammatory diseases

    No full text
    Objectives To compare the cumulative incidence and disease severity of reported SARS-CoV-2 omicron breakthrough infections between patients with immune-mediated inflammatory diseases (IMID) on immunosuppressants and controls, and to investigate determinants for breakthrough infections. Methods Data were used from an ongoing national prospective multicentre cohort study on SARS-CoV-2 vaccination responses in patients with IMID in the Netherlands (Target-to-B! (T2B!) study). Patients wih IMID on immunosuppressants and controls (patients with IMID not on immunosuppressants and healthy controls) who completed primary immunisation were included. The observation period was between 1 January 2022 and 1 April 2022, during which the SARS-CoV-2 omicron (BA.1 and BA.2 subvariant) was dominant. A SARS-CoV-2 breakthrough infection was defined as a reported positive PCR and/or antigen test at least 14 days after primary immunisation. A multivariate logistic regression model was used to investigate determinants. Results 1593 patients with IMID on immunosuppressants and 579 controls were included. The cumulative incidence of breakthrough infections was 472/1593 (29.6%; 95% CI 27% to 32%) in patients with IMID on immunosuppressants and 181/579 (31.3%; 95% CI 28% to 35%) in controls (p=0.42). Three (0.5%) participants had severe disease. Seroconversion after primary immunisation (relative risk, RR 0.71; 95% CI 0.52 to 0.96), additional vaccinations (RR 0.61; 95% CI 0.49 to 0.76) and a prior SARS-CoV-2 infection (RR 0.60; 95% CI 0.48 to 0.75) were associated with decreased risk of breakthrough infection. Conclusions The cumulative incidence of reported SARS-CoV-2 omicron breakthrough infections was high, but similar between patients with IMID on immunosuppressants and controls, and disease severity was mostly mild. Additional vaccinations and prior SARS-CoV-2 infections may reduce the incidence of breakthrough infections

    mRNA-1273 vaccinated inflammatory bowel disease patients receiving TNF inhibitors develop broad and robust SARS-CoV-2-specific CD8<sup>+</sup> T cell responses

    Get PDF
    SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.</p

    Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: a substudy of data from two prospective cohort studies

    No full text
    Background: Data are scarce on immunogenicity of COVID-19 vaccines in patients with autoimmune diseases, who are often treated with immunosuppressive drugs. We aimed to investigate the effect of different immunosuppressive drugs on antibody development after COVID-19 vaccination in patients with autoimmune diseases. Methods: In this study, we used serum samples collected from patients with autoimmune diseases and healthy controls who were included in two ongoing prospective cohort studies in the Netherlands. Participants were eligible for inclusion in this substudy if they had been vaccinated with any COVID-19 vaccine via the Dutch national vaccine programme, which at the time was prioritising vaccination of older individuals. Samples were collected after the first or second COVID-19 vaccination. No serial samples were collected. Seroconversion rates and IgG antibody titres against the receptor-binding domain of the SARS-CoV-2 spike protein were measured. Logistic and linear regression analyses were used to investigate the association between medication use at the time of vaccination and at least until sampling, seroconversion rates, and IgG antibody titres. The studies from which data were collected are registered on the Netherlands Trial Register, Trial ID NL8513, and ClinicalTrials.org, NCT04498286. Findings: Between April 26, 2020, and March 1, 2021, 3682 patients with rheumatic diseases, 546 patients with multiple sclerosis, and 1147 healthy controls were recruited to participate in the two prospective cohort studies. Samples were collected from patients with autoimmune diseases (n=632) and healthy controls (n=289) after their first (507 patients and 239 controls) or second (125 patients and 50 controls) COVID-19 vaccination. The mean age of both patients and controls was 63 years (SD 11), and 423 (67%) of 632 patients with autoimmune diseases and 195 (67%) of 289 controls were female. Among participants without previous SARS-CoV-2 infection, seroconversion after first vaccination were significantly lower in patients than in controls (210 [49%] of 432 patients vs 154 [73%] of 210 controls; adjusted odds ratio 0·33 [95% CI 0·23–0·48]; p<0·0001), mainly due to lower seroconversion in patients treated with methotrexate or anti-CD20 therapies. After the second vaccination, seroconversion exceeded 80% in all patient treatment subgroups, except among those treated with anti-CD20 therapies (three [43%] of seven patients). We observed no difference in seroconversion and IgG antibody titres between patients with a previous SARS-CoV-2 infection who had received a single vaccine dose (72 [96%] of 75 patients, median IgG titre 127 AU/mL [IQR 27–300]) and patients without a previous SARS-CoV-2 infection who had received two vaccine doses (97 [92%] of 106 patients, median IgG titre 49 AU/mL [17–134]). Interpretation: Our data suggest that seroconversion after a first COVID-19 vaccination is delayed in older patients on specific immunosuppressive drugs, but that second or repeated exposure to SARS-CoV-2, either via infection or vaccination, improves humoral immunity in patients treated with immunosuppressive drugs. Therefore, delayed second dosing of COVID-19 vaccines should be avoided in patients receiving immunosuppressive drugs. Future studies that include younger patients need to be done to confirm the generalisability of our results. Funding: ZonMw, Reade Foundation, and MS Center Amsterdam

    Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: a substudy of data from two prospective cohort studies

    No full text
    Background: Data are scarce on immunogenicity of COVID-19 vaccines in patients with autoimmune diseases, who are often treated with immunosuppressive drugs. We aimed to investigate the effect of different immunosuppressive drugs on antibody development after COVID-19 vaccination in patients with autoimmune diseases. Methods: In this study, we used serum samples collected from patients with autoimmune diseases and healthy controls who were included in two ongoing prospective cohort studies in the Netherlands. Participants were eligible for inclusion in this substudy if they had been vaccinated with any COVID-19 vaccine via the Dutch national vaccine programme, which at the time was prioritising vaccination of older individuals. Samples were collected after the first or second COVID-19 vaccination. No serial samples were collected. Seroconversion rates and IgG antibody titres against the receptor-binding domain of the SARS-CoV-2 spike protein were measured. Logistic and linear regression analyses were used to investigate the association between medication use at the time of vaccination and at least until sampling, seroconversion rates, and IgG antibody titres. The studies from which data were collected are registered on the Netherlands Trial Register, Trial ID NL8513, and ClinicalTrials.org, NCT04498286. Findings: Between April 26, 2020, and March 1, 2021, 3682 patients with rheumatic diseases, 546 patients with multiple sclerosis, and 1147 healthy controls were recruited to participate in the two prospective cohort studies. Samples were collected from patients with autoimmune diseases (n=632) and healthy controls (n=289) after their first (507 patients and 239 controls) or second (125 patients and 50 controls) COVID-19 vaccination. The mean age of both patients and controls was 63 years (SD 11), and 423 (67%) of 632 patients with autoimmune diseases and 195 (67%) of 289 controls were female. Among participants without previous SARS-CoV-2 infection, seroconversion after first vaccination were significantly lower in patients than in controls (210 [49%] of 432 patients vs 154 [73%] of 210 controls; adjusted odds ratio 0·33 [95% CI 0·23–0·48]; p<0·0001), mainly due to lower seroconversion in patients treated with methotrexate or anti-CD20 therapies. After the second vaccination, seroconversion exceeded 80% in all patient treatment subgroups, except among those treated with anti-CD20 therapies (three [43%] of seven patients). We observed no difference in seroconversion and IgG antibody titres between patients with a previous SARS-CoV-2 infection who had received a single vaccine dose (72 [96%] of 75 patients, median IgG titre 127 AU/mL [IQR 27–300]) and patients without a previous SARS-CoV-2 infection who had received two vaccine doses (97 [92%] of 106 patients, median IgG titre 49 AU/mL [17–134]). Interpretation: Our data suggest that seroconversion after a first COVID-19 vaccination is delayed in older patients on specific immunosuppressive drugs, but that second or repeated exposure to SARS-CoV-2, either via infection or vaccination, improves humoral immunity in patients treated with immunosuppressive drugs. Therefore, delayed second dosing of COVID-19 vaccines should be avoided in patients receiving immunosuppressive drugs. Future studies that include younger patients need to be done to confirm the generalisability of our results. Funding: ZonMw, Reade Foundation, and MS Center Amsterdam

    Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: a substudy of data from two prospective cohort studies

    No full text
    Background: Data are scarce on immunogenicity of COVID-19 vaccines in patients with autoimmune diseases, who are often treated with immunosuppressive drugs. We aimed to investigate the effect of different immunosuppressive drugs on antibody development after COVID-19 vaccination in patients with autoimmune diseases. Methods: In this study, we used serum samples collected from patients with autoimmune diseases and healthy controls who were included in two ongoing prospective cohort studies in the Netherlands. Participants were eligible for inclusion in this substudy if they had been vaccinated with any COVID-19 vaccine via the Dutch national vaccine programme, which at the time was prioritising vaccination of older individuals. Samples were collected after the first or second COVID-19 vaccination. No serial samples were collected. Seroconversion rates and IgG antibody titres against the receptor-binding domain of the SARS-CoV-2 spike protein were measured. Logistic and linear regression analyses were used to investigate the association between medication use at the time of vaccination and at least until sampling, seroconversion rates, and IgG antibody titres. The studies from which data were collected are registered on the Netherlands Trial Register, Trial ID NL8513, and ClinicalTrials.org, NCT04498286. Findings: Between April 26, 2020, and March 1, 2021, 3682 patients with rheumatic diseases, 546 patients with multiple sclerosis, and 1147 healthy controls were recruited to participate in the two prospective cohort studies. Samples were collected from patients with autoimmune diseases (n=632) and healthy controls (n=289) after their first (507 patients and 239 controls) or second (125 patients and 50 controls) COVID-19 vaccination. The mean age of both patients and controls was 63 years (SD 11), and 423 (67%) of 632 patients with autoimmune diseases and 195 (67%) of 289 controls were female. Among participants without previous SARS-CoV-2 infection, seroconversion after first vaccination were significantly lower in patients than in controls (210 [49%] of 432 patients vs 154 [73%] of 210 controls; adjusted odds ratio 0·33 [95% CI 0·23–0·48]; p<0·0001), mainly due to lower seroconversion in patients treated with methotrexate or anti-CD20 therapies. After the second vaccination, seroconversion exceeded 80% in all patient treatment subgroups, except among those treated with anti-CD20 therapies (three [43%] of seven patients). We observed no difference in seroconversion and IgG antibody titres between patients with a previous SARS-CoV-2 infection who had received a single vaccine dose (72 [96%] of 75 patients, median IgG titre 127 AU/mL [IQR 27–300]) and patients without a previous SARS-CoV-2 infection who had received two vaccine doses (97 [92%] of 106 patients, median IgG titre 49 AU/mL [17–134]). Interpretation: Our data suggest that seroconversion after a first COVID-19 vaccination is delayed in older patients on specific immunosuppressive drugs, but that second or repeated exposure to SARS-CoV-2, either via infection or vaccination, improves humoral immunity in patients treated with immunosuppressive drugs. Therefore, delayed second dosing of COVID-19 vaccines should be avoided in patients receiving immunosuppressive drugs. Future studies that include younger patients need to be done to confirm the generalisability of our results. Funding: ZonMw, Reade Foundation, and MS Center Amsterdam

    T cell activation markers CD38 and HLA-DR indicative of non-seroconversion in anti-CD20-treated patients with multiple sclerosis following SARS-CoV-2 mRNA vaccination

    Get PDF
    Background:Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. Methods:In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). Results:Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. Conclusion:These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.</p

    Longitudinal rheumatoid factor autoantibody responses after SARS-CoV-2 vaccination or infection

    Get PDF
    BackgroundRheumatoid factors (RFs) are autoantibodies that target the Fc region of IgG, and are found in patients with rheumatic diseases as well as in the healthy population. Many studies suggest that an immune trigger may (transiently) elicit RF responses. However, discrepancies between different studies make it difficult to determine if and to which degree RF reactivity can be triggered by vaccination or infection.ObjectiveWe quantitatively explored longitudinal RF responses after SARS-CoV-2 vaccination and infection in a well-defined, large cohort using a dual ELISA method that differentiates between true RF reactivity and background IgM reactivity. In addition, we reviewed existing literature on RF responses after vaccination and infection.Methods151 healthy participants and 30 RA patients were included to measure IgM-RF reactivity before and after SARS-CoV-2 vaccinations by ELISA. Additionally, IgM-RF responses after a SARS-CoV-2 breakthrough infection were studied in 51 healthy participants.ResultsPublished prevalence studies in subjects after infection report up to 85% IgM-RF seropositivity. However, seroconversion studies (both infection and vaccination) report much lower incidences of 2-33%, with a trend of lower percentages observed in larger studies. In the current study, SARS-CoV-2 vaccination triggered low-level IgM-RF responses in 5.5% (8/151) of cases, of which 1.5% (2/151) with a level above 10 AU/mL. Breakthrough infection was accompanied by development of an IgM-RF response in 2% (1/51) of cases.ConclusionOur study indicates that de novo RF induction following vaccination or infection is an uncommon event, which does not lead to RF epitope spreading

    Antibody development and disease severity of COVID-19 in non-immunised patients with rheumatic immune-mediated inflammatory diseases: data from a prospective cohort study

    No full text
    BACKGROUND: Research on the disease severity of COVID-19 in patients with rheumatic immune-mediated inflammatory diseases (IMIDs) has been inconclusive, and long-term prospective data on the development of SARS-CoV-2 antibodies in these patients are lacking. METHODS: Adult patients with rheumatic IMIDs from the Amsterdam Rheumatology and Immunology Center, Amsterdam were invited to participate. All patients were asked to recruit their own sex-matched and age-matched control subject. Clinical data were collected via online questionnaires (at baseline, and after 1-4 and 5-9 months of follow-up). Serum samples were collected twice and analysed for the presence of SARS-CoV-2-specific antibodies. Subsequently, IgG titres were quantified in samples with a positive test result. FINDINGS: In total, 3080 consecutive patients and 1102 controls with comparable age and sex distribution were included for analyses. Patients were more frequently hospitalised compared with controls when infected with SARS-CoV-2; 7% vs 0.7% (adjusted OR: 7.33, 95% CI: 0.96 to 55.77). Only treatment with B-cell targeting therapy was independently associated with an increased risk of COVID-19-related hospitalisation (adjusted OR: 14.62, 95% CI: 2.31 to 92.39). IgG antibody titres were higher in hospitalised compared with non-hospitalised patients, and slowly declined with time in similar patterns for patients in all treatment subgroups and controls. INTERPRETATION: We observed that patients with rheumatic IMIDs, especially those treated with B-cell targeting therapy, were more likely to be hospitalised when infected with SARS-CoV-2. Treatment with conventional synthetic disease-modifying antirheumatic drugs (DMARDs) and biological DMARDs other than B-cell targeting agents is unlikely to have negative effects on the development of long-lasting humoral immunity against SARS-CoV-2
    corecore