1,656 research outputs found
Pulse rise time and amplitude detector Patent
Development and characteristics of electric circuitry for detecting electrical pulses rise time and amplitud
Pulse Amplitude and Width Detector-Patent
Electrical testing apparatus for detecting amplitude and width of transient puls
Blood changes in acutely splenectomized rats during prolonged hyperoxic exposure
Effect of high pressure oxygen exposure on red blood cells in splenectomized rat
Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework
The High Level Trigger (HLT) system of the ALICE experiment is an online
event filter and trigger system designed for input bandwidths of up to 25 GB/s
at event rates of up to 1 kHz. The system is designed as a scalable PC cluster,
implementing several hundred nodes. The transport of data in the system is
handled by an object-oriented data flow framework operating on the basis of the
publisher-subscriber principle, being designed fully pipelined with lowest
processing overhead and communication latency in the cluster. In this paper, we
report the latest measurements where this framework has been operated on five
different sites over a global north-south link extending more than 10,000 km,
processing a ``real-time'' data flow.Comment: 8 pages 4 figure
Understanding the errors of SHAPE-directed RNA structure modeling
Single-nucleotide-resolution chemical mapping for structured RNA is being
rapidly advanced by new chemistries, faster readouts, and coupling to
computational algorithms. Recent tests have shown that selective 2'-hydroxyl
acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in
modeling the helices of RNA secondary structure. Here, we benchmark the method
using six molecules for which crystallographic data are available: tRNA(phe)
and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I
ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic
di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs
gave an overall false negative rate (FNR) of 17% and a false discovery rate
(FDR) of 21%, with at least one helix prediction error in five of the six
cases. Extensive variations of data processing, normalization, and modeling
parameters did not significantly mitigate modeling errors. Only one varation,
filtering out data collected with deoxyinosine triphosphate during primer
extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual
structure modeling errors are explained by the insufficient information content
of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping
analysis. Beyond these benchmark cases, bootstrapping suggests a low level of
confidence (<50%) in the majority of helices in a previously proposed
SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA
modeling is not always unambiguous, and helix-by-helix confidence estimates, as
described herein, may be critical for interpreting results from this powerful
methodology.Comment: Biochemistry, Article ASAP (Aug. 15, 2011
Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al
Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research
Precision Determination of the Neutron Spin Structure Function g1n
We report on a precision measurement of the neutron spin structure function
using deep inelastic scattering of polarized electrons by polarized
^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2,
we obtain at an average . We find relatively large negative
values for at low . The results call into question the usual Regge
theory method for extrapolating to x=0 to find the full neutron integral
, needed for testing quark-parton model and QCD sum rules.Comment: 5 pages, 3 figures To be published in Phys. Rev. Let
Tertiary-Treated Municipal Wastewater is a Significant Point Source of Antibiotic Resistance Genes Into Duluth-Superior Harbor
In this study, the impact of tertiary-treated municipal wastewater on the quantity of several antibiotic resistance determinants in Duluth-Superior Harbor was investigated by collecting surface water and sediment samples from 13 locations in Duluth-Superior Harbor, the St. Louis River, and Lake Superior. Quantitative PCR (qPCR) was used to target three different genes encoding resistance to tetracycline (tet(A), tet(X), and tet(W)), the gene encoding the integrase of class 1 integrons (intI1), and total bacterial abundance (16S rRNA genes) as well as total and human fecal contamination levels (16S rRNA genes specific to the genus Bacteroides). The quantities of tet(A), tet(X), tet(W), intI1, total Bacteroides, and human-specific Bacteroides were typically 20-fold higher in the tertiary-treated wastewater than in nearby surface water samples. In contrast, the quantities of these genes in the St. Louis River and Lake Superior were typically below detection. Analysis of sequences of tet(W) gene fragments from four different samples collected throughout the study site supported the conclusion that tertiary-treated municipal wastewater is a point source of resistance genes into Duluth-Superior Harbor. This study demonstrates that the discharge of exceptionally treated municipal wastewater can have a statistically significant effect on the quantities of antibiotic resistance genes in otherwise pristine surface waters
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …