12 research outputs found

    Ozone fumigation effects on the morphology and biomass of Norway spruce (Picea abies L.) saplings

    Full text link

    Response of artificially defoliated Betula pendula seedlings to additional soil nutrient supply

    No full text
    The impact of leaf damage on the growth of young silver birch seedlings with and without additional nutrient supply was investigated by simulating leaf-insect damage and applying different levels (25%, 50% and 75%) of artificial defoliation. Based on field-practical and cost-effective methods, we determined how fertilization practices compensate for foliage loss, and the combined effect on silver birch seedling growth. The mineral fertilizers applied to the 25-75%-defoliated silver birch seedlings reduced the growth in aboveground biomass compared to the fertilized but undamaged seedlings. Our results showed that when the birch seedlings received more nutrients they did not compensate for the loss of foliar mass. However, the seedlings loosing part of their foliar mass and receiving no additional fertilizers did compensate for the foliage loss and their root growth was not weakened, using soil nutrients more effectively. Mineral fertilization up to optimal nutritional balance could be a beneficial tool for increasing growth rate and biomass accumulation in the short-term period. However, our study demonstrated that additional fertilization does not necessarily lead to growth compensation of partly defoliated young birch trees

    Response of artificially defoliated Betula pendula seedlings to additional soil nutrient supply

    No full text

    Allelopathic effects of dominant ground vegetation species on initial growth of Pinus sylvestris L. seedlings in response to different temperature scenarios

    No full text
    The dominant species of ground vegetation cover in clear-cuts impact the regeneration of Scots pine forests due to the biochemical properties of these dominant species. Environmental conditions in clear-cuts, specifically increased light and temperature, can alter the biochemical impact of dominant species on subsequent Scots pine regeneration processes. To investigate this, plant species diversity, frequency and cover were estimated in order to identify the dominant species of ground vegetation in clear-cut areas over a two-year period. Afterward, the impact of dominant species extracts on pine seed germination and seedling physiology at different temperature scenarios was evaluated. The species Pleurozium schreberi (Brid.) Mitt., Vaccinium vitis-idaea L. and Calluna vulgaris (L.) Hull were recorded as dominant in 1-yr-old clear-cut areas, and Vaccinium vitis-idaea L., Rumex acetosella L., and Calamagrostis epigejos (L.) Roth were dominant in 2-yr-old clear-cut areas. The prepared aqueous extracts of all dominant species exhibited strong inhibitory effects on pine seed germination and seedling morpho-physiological traits (the length of the radicle and hypocotyl; chlorophyll a, b, a/b and carotenoid content), resulting in the reduction of ex situ pine adaptive capacity at higher air temperature (24°C) compared to that at lower temperature (20°C). Significantly (p<0.05) stronger inhibitory effects of root and shoot extracts produced from all dominant species on chlorophyll a, b and a/b content were recorded at higher temperature (22-24°C) compared to lower (20°C) temperature. A significantly lower content of carotenoids was observed in the control (24°C) temperature. Thus, a high increase of ambient temperature may cause unfavourable conditions for Scots pine seedling growth in boreal forests
    corecore