4 research outputs found

    Interventional Strategies to Delay Aging-Related Dysfunctions of the Musculoskeletal System

    Get PDF
    Aging affects bones, cartilage, muscles, and other connective tissue in the musculoskeletal system, leading to numerous age-related pathologies including osteoporosis, osteoarthritis, and sarcopenia. Understanding healthy aging may therefore open new therapeutic targets, thereby leading to the development of novel approaches to prevent several age-related orthopaedic diseases. It is well recognized that aging-related stem cell depletion and dysfunction leads to reduced regenerative capacity in various musculoskeletal tissues. However, more recent evidence suggests that dysregulated autophagy and cellular senescence might be fundamental mechanisms associated with aging-related musculoskeletal decline. The mammalian/mechanical target of Rapamycin (mTOR) is known to be an essential negative regulator of autophagy, and its inhibition has been demonstrated to promote longevity in numerous species. Besides, several reports demonstrate that selective elimination of senescent cells and their cognate Senescence-Associated Secretory Phenotype (SASP) can mitigate musculoskeletal tissue decline. Therefore, senolytic drugs/agents that can specifically target senescent cells, may offer a novel therapeutic strategy to treat a litany of age-related orthopaedic conditions. This chapter focuses on osteoarthritis and osteoporosis, very common debilitating orthopaedic conditions, and reviews current concepts highlighting new therapeutic strategies, including the mTOR inhibitors, senolytic agents, and mesenchymal stem cell (MSC)-based therapies

    Wireless Measurements Using Electrical Impedance Spectroscopy to Monitor Fracture Healing

    No full text
    There is an unmet need for improved, clinically relevant methods to longitudinally quantify bone healing during fracture care. Here we develop a smart bone plate to wirelessly monitor healing utilizing electrical impedance spectroscopy (EIS) to provide real-time data on tissue composition within the fracture callus. To validate our technology, we created a 1-mm rabbit tibial defect and fixed the bone with a standard veterinary plate modified with a custom-designed housing that included two impedance sensors capable of wireless transmission. Impedance magnitude and phase measurements were transmitted every 48 h for up to 10 weeks. Bone healing was assessed by X-ray, µCT, and histology. Our results indicated the sensors successfully incorporated into the fracture callus and did not impede repair. Electrical impedance, resistance, and reactance increased steadily from weeks 3 to 7—corresponding to the transition from hematoma to cartilage to bone within the fracture gap—then plateaued as the bone began to consolidate. These three electrical readings significantly correlated with traditional measurements of bone healing and successfully distinguished between union and not-healed fractures, with the strongest relationship found with impedance magnitude. These results suggest that our EIS smart bone plate can provide continuous and highly sensitive quantitative tissue measurements throughout the course of fracture healing to better guide personalized clinical care
    corecore