26 research outputs found
Early replication in pulmonary B cells after infection with marek's disease herpesvirus by the respiratory route
Natural infection with Marek's disease virus occurs through the respiratory mucosa after chickens inhale dander shed from infected chickens. The early events in the lung following exposure to the feather and squamous epithelial cell debris containing the viral particles remain unclear. In order to elucidate the virological and immunological consequences of MDV infection for the respiratory tract, chickens were infected by intratracheal administration of infective dander. Differences between susceptible and resistant chickens were immediately apparent, with delayed viral replication and earlier onset of interferon (IFN)-ĂÂł production in the latter. CD4+ and CD8 + T cells surrounded infected cells in the lung. Although viral replication was evident in macrophages, pulmonary B cells were the main target cell type in susceptible chickens following intratracheal infection with MDV. In accordance, depletion of B cells curtailed viremia and substantially affected pathogenesis in susceptible chickens. Together the data described here demonstrate the role of pulmonary B cells as the primary and predominant target cells and their importance for MDV pathogenesis. Ă© 2009, Mary Ann Liebert, Inc.
Drive counts as a method of estimating ungulate density in forests: mission impossible?
Although drive counts are frequently used to estimate the size of deer populations in forests, little is known about how counting methods or the density and social organization of the deer species concerned influence the accuracy of the estimates obtained, and hence their suitability for informing management decisions. As these issues cannot readily be examined for real populations, we conducted a series of âvirtual experimentsâ in a computer simulation model to evaluate the effects of block size, proportion of forest counted, deer density, social aggregation and spatial auto-correlation on the accuracy of drive counts. Simulated populations of red and roe deer were generated on the basis of drive count data obtained from Polish commercial forests. For both deer species, count accuracy increased with increasing density, and decreased as the degree of aggregation, either demographic or spatial, within the population increased. However, the effect of density on accuracy was substantially greater than the effect of aggregation. Although improvements in accuracy could be made by reducing the size of counting blocks for low-density, aggregated populations, these were limited. Increasing the proportion of the forest counted led to greater improvements in accuracy, but the gains were limited compared with the increase in effort required. If it is necessary to estimate the deer population with a high degree of accuracy (e.g. within 10% of the true value), drive counts are likely to be inadequate whatever the deer density. However, if a lower level of accuracy (within 20% or more) is acceptable, our study suggests that at higher deer densities (more than ca. five to seven deer/100Â ha) drive counts can provide reliable information on population size
The impact of viral mutations on recognition by SARS-CoV-2 specific TÂ cells.
We identify amino acid variants within dominant SARS-CoV-2 TÂ cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific TÂ cells assessed by IFN-Îł and cytotoxic killing assays. Complete loss of TÂ cell responsiveness was seen due to Q213K in the Aâ01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the Bâ27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the Aâ03:01/Aâ11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ TÂ cell lines unable to recognize variant epitopes have diverse TÂ cell receptor repertoires. These data demonstrate the potential for TÂ cell evasion and highlight the need for ongoing surveillance for variants capable of escaping TÂ cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC â IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
Optimal foraging and community structure: implications for a guild of generalist grassland herbivores
A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd
The disappearance of muntjac (Muntiacus reevesi) and roe deer (Capreolus capreolus) pellet groups in a pine forest of lowland England
Reliable knowledge of the disappearance rate of faecal pellets is essential for converting pellet density to deer density when using standing-crop pellet-group counts. Disappearance of muntjac and roe deer pellet groups was monitored in four growth stages of a pine forest of lowland England over a 15-month period. Time to disappearance of the pellet groups (days) of both species significantly differed between habitats and months; it was shorter in late summer to early autumn and in habitats with more ground vegetation. Muntjac pellet groups disappeared more quickly than roe deer pellet groups. Time to disappearance of roe deer pellet groups was negatively correlated with air and grass temperature in pre-thicket and pre-fell habitats, while time to disappearance of muntjac pellet groups was negatively correlated with frequency of rainfall and positively correlated with the run of wind (air passage over a site within a 24-h period measured in km) in pre-thicket habitats. It is the time of the standing-crop pellet-group counts and the disappearance rate of pellet groups deposited in different months and habitats that determine the appropriate method for conversion of pellet-group density to deer density