4 research outputs found

    Nitric oxide鈥憈argeted protein phosphorylation during human sperm capacitation

    Get PDF
    Among many other molecules, nitric oxide insures the correct progress of sperm capacitation by mediating phosphorylation events. For a more comprehensive understanding of how this happens, we capacitated human spermatozoa from healthy men in the presence/absence of S-Nitrosoglutathione, a nitric oxide donor, two nitric oxide synthase inhibitors, NG- Nitro-l-arginine Methyl Ester Hydrochloride and Aminoguanidine Hemisulfate salt and, finally, with/without l-Arginine, the substrate for nitric oxide synthesis, and/or human follicular fluid. When analyzing the phosphorylation of protein kinase A substrates and tyrosine residues, we particularly observed how the inhibition of nitric oxide synthesis affects certain protein bands (~ 110, ~ 87, ~ 75 and ~ 62 kD) by lowering their phosphorylation degree, even when spermatozoa were incubated with l-Arginine and/or follicular fluid. Mass spectrometry analysis identified 29 proteins in these species, related to: spermatogenesis, binding to the zona pellucida, energy and metabolism, stress response, motility and structural organization, signaling and protein turnover. Significant changes in the phosphorylation degree of specific proteins could impair their biological activity and result in severe fertility-related phenotypes. These findings provide a deeper understanding of nitric oxide鈥檚 role in the capacitation process, and consequently, future studies in infertile patients should determine how nitric oxide mediates phosphorylation events in the species here described

    Regulation of boar sperm functionality by the nitric oxidesynthase/nitric oxide system

    Get PDF
    Purpose Nitric oxide (NO) is a free radical synthesized mainly by nitric oxide synthases (NOSs). NO regulates many aspects in sperm physiology in different species. However, in vitro studies investigating NOS distribution, and how NO influences sperm capacitation and fertilization (IVF) in porcine, have been lacking. Therefore, our study aimed to clarify these aspects. Methods Two main experiments were conducted: (i) boar spermatozoa were capacitated in the presence/absence of S-nitrosoglutathione (GSNO), a NO donor, and two NOS inhibitors, N-G-nitro-L-arginine methyl ester hydrochloride (L-NAME) and aminoguanidine hemisulfate salt (AG), and (ii) IVF was performed in the presence or not of these supplements, but neither the oocytes nor the sperm were previously incubated in the supplemented media. Results Our results suggest that NOS distribution could be connected to pathways which lead to capacitation. Treatments showed significant differences after 30 min of incubation, compared to time zero in almost all motility parameters (P < 0.05). When NOSs were inhibited, three protein kinase A (PKA) substrates (similar to 75, similar to 55, and similar to 50 kDa) showed lower phosphorylation levels between treatments (P < 0.05). No differences were observed in total tyrosine phosphorylation levels evaluated by Western blotting nor in situ. The percentage of acrosome-reacted sperm and phosphatidylserine translocation was significantly lower with L-NAME. Both inhibitors reduced sperm intracellular calcium concentration and IVF parameters, but L-NAME impaired sperm ability to penetrate denuded oocytes. Conclusions These findings point out to the importance of both sperm and cumulus-oocyte-derived NO in the IVF outcome in porcine.This study was supported by H2020 MSC-ITN-EJD 675526 REP-BIOTECH, the Spanish Ministry of Economy and Competitiveness (MINECO), and the European Regional Development Fund (FEDER), Grant AGL2015-66341-R, and by a grant ESPDOC17/33 (to Jon Romero-Aguirregomezcorta) from the University of the Basque Country (UPV/EHU, Spain)

    Papel del sistema de 贸xido n铆trico en diferentes procesos reproductivos

    Full text link
    El 贸xido n铆trico (NO) regula los procesos fisiol贸gicos y patol贸gicos en diferentes sistemas org谩nicos, incluido el sistema vascular, nervioso y reproductor. Su s铆ntesis tiene lugar a partir del precursor L-Arginina, gracias a la familia de enzimas 脫xido N铆trico Sintasa (NOS). Esta familia se encuentra formada por dos enzimas constitutivas, la NOS endotelial y la neuronal (eNOS, nNOS), y una inducible (iNOS). Los principales objetivos de esta tesis fueron estudiar el efecto del NO sobre la capacitaci贸n esperm谩tica en dos especies diferentes y determinar si los niveles de NO en el l铆quido folicular (FF) pueden predecir los resultados cl铆nicos de las T茅cnicas de Reproducci贸n Asistida. Para ello, en primer lugar, se analiz贸 c贸mo la adici贸n de NO o la inhibici贸n de su s铆ntesis afectaba a la capacitaci贸n esperm谩tica y a la fecundaci贸n in vitro (FIV) en la especie porcina (Cap铆tulo 1). Posteriormente, se estudi贸 c贸mo la fosforilaci贸n de las prote铆nas es modulada por el NO, L-Arginina y el FF durante la capacitaci贸n en espermatozoides humanos (Cap铆tulo 2). Finalmente, se determinaron los niveles de NO en el FF y su relacion con la calidad de los ovocitos en mujeres (Cap铆tulo 3). En el primer cap铆tulo se describi贸 la localizaci贸n de las tres isoformas de la NOS en espermatozoides mediante inmunocitoquimica. Tanto la eNOS como la nNOS se ubicaron en la regi贸n de la cabeza esperm谩tica, con una se帽al d茅bil en la pieza principal y final de la cola. Sin embargo, la iNOS mostr贸 una distribuci贸n m谩s general. En relaci贸n a: motilidad, sustratos de fosfo-PKA, fosforilaci贸n en tirosina, reacci贸n acrosomal, translocaci贸n de fosfatidilserina y concentraci贸n del calcio intracelular, se observ贸 que eran modificados por la presencia o ausencia de NO. Para estos an谩lisis se utiliz贸 el donante de NO, S-Nitrosoglutati贸n (GSNO), y dos inhibidores de las NOS, NG-Nitro-L-Arginina Metil 脡ster (L-NAME) y Aminoguanidina (AG). A tiempo 0 la motilidad no se vio afectada por los tratamientos utilizados. Sin embargo, a los 30 minutos se observ贸 que la velocidad rectil铆nea (VSL) y la velocidad media (VAP) disminuyen en presencia de AG. La inhibici贸n de NOS disminuy贸 el grado de fosforilaci贸n de tres sustratos de la PKA (~ 75, ~ 55 y ~ 50 kDa) aunque fosforilaci贸n de tirosina no difiri贸 entre los tratamientos. El inhibidor L-NAME hizo disminuir el porcentaje de espermatozoides reaccionados y la exteriorizaci贸n de la fosfatidilserina. L-NAME y AG indujeron una disminuci贸n en la concentraci贸n intracelular de calcio. En segundo lugar, se evalu贸 el papel del NO sobre la interacci贸n de gametos en presencia o ausencia de c茅lulas del cumulus. Se observ贸 que tanto la adici贸n del L-NAME como del AG durante la FIV, produc铆a un descenso en el porcentaje de ovocitos penetrados cuando 茅stos se encontraban rodeados por las c茅lulas del cumulus. No obstante, al eliminar 茅stas c茅lulas la penetraci贸n disminuy贸 a煤n m谩s, llegando a ser nula en presencia del inhibidor L-NAME. En el Cap铆tulo 2, se analiz贸 el papel de la L-Arginina y del FF sobre la fosforilaci贸n en serina, treonina y tirosina en espermatozoides de hombres y si su efecto se ve铆a modificado por la presencia de donante de NO o por los inhibidores de s铆ntesis de NO. Se observ贸 que cuatro bandas de prote铆nas de ~ 110, ~ 87, ~ 75 y ~ 62 kDa disminu铆an la intensidad de fosforilaci贸n en presencia de inhibidores de las NOS, tanto en presencia como en ausencia de L-Arginina o FF. Posteriormente se identificaron que prote铆nas eran las afectadas y se observ贸 que 29 de ellas estaban relacionadas con diferentes procesos reproductivos: espermatog茅nesis, uni贸n a la zona pel煤cida, metabolismo energ茅tico, respuesta al estr茅s, la motilidad y estructura, y se帽alizaci贸n y recambio de prote铆nas. En el estudio final (Cap铆tulo 3), se determin贸 la relaci贸n entre el nivel de nitrito (NO2) y nitrato (NO3) en el FF de mujeres que participaron en un programa de donaci贸n de gametos y la calidad de sus ovocitos. Se observ贸 que ni el n煤mero total de ovocitos recogidos ni el de ovocitos MII se asociaron con los niveles de NO2 y NO3 en el FF. Sin embargo, la proporci贸n de ovocitos MII s铆 que se relacion贸 directamente con los niveles de NO2 e inversamente con los niveles de NO3. Los resultados obtenidos en la presente tesis doctoral muestran la importancia del NO sobre los gametos y su interacci贸n. En relaci贸n al espermatozoide porcino, se observ贸 que la localizaci贸n de las isoformas de la NOS es diferente y que la inhibici贸n de la s铆ntesis de NO disminuye los par谩metros que participan en el proceso de capacitaci贸n y la penetraci贸n de ovocitos. En relaci贸n a los espermatozoides del hombre, se determin贸 que al inhibir la producci贸n de NO se produce una disminuci贸n de la fosforilaci贸n de prote铆nas relacionadas con la funci贸n reproductiva y este efecto no se revierte por la presencia de L-Arginina o FF. Adem谩s, la s铆ntesis de NO en el FF de mujeres donantes de ovocitos sometidas a tratamiento de superovulaci贸n, se relaciona con el porcentaje de ovocitos maduros, pero no con la cantidad total de ovocitos recuperados tras el tratamiento. Nitric oxide (NO) regulates both physiological and pathological processes in different organic systems, including the vascular, nervous, and reproductive system. Its synthesis takes place from a precursor, namely L-Arginine, thanks to the Nitric Oxide Synthase (NOS) family of enzymes. The latter includes two constitutive enzymes, the endothelial and the neuronal NOS (eNOS, nNOS), and one inducible isoform (iNOS). The main objectives of this thesis were to study the effect of NO on sperm capacitation in two different species and to determine whether or not the NO levels in the follicular fluid (FF) can predict the clinical outcomes from Assisted Reproduction Techniques. To do this, the first step was to analyze how the addition of NO or the inhibition of its synthesis affected sperm capacitation and in vitro fertilization (IVF) in the porcine species (Chapter 1). Subsequently, the modulation of protein phosphorylation by NO, L-Arginine and FF was investigated during human sperm capacitation (Chapter 2). Finally, the levels of NO in the FF were determined and their correlation with the quality of the oocytes in women was studied (Chapter 3). In the first chapter, the localization of the three NOS isoforms was described in spermatozoa by immunocytochemistry. Both eNOS and nNOS were located in the sperm head region, with a faint signal in the principal and end piece of the tail. On the other hand, iNOS showed a more general distribution. The following parameters: motility, phospho-PKA substrates, tyrosine phosphorylation, acrosome reaction, phosphatidylserine translocation and intracellular calcium concentration, were affected depending on the presence or absence of NO. For these assays, a NO donor, S-Nitrosoglutathione (GSNO), and two NOS inhibitors, NG-Nitro-L-Arginine Methyl Ester Hydrochloride (L-NAME) and Aminoguanidine Hemisulfate salt (AG), were used. At time 0, the used treatments did not affect motility patterns, however, after 30 minutes of incubation the straight-line (VSL) and average path velocity (VAP) decreased in the presence of AG. The inhibition of NOS lowered the phosphorylation degree of three PKA substrates (~ 75, ~ 55 and ~ 50 kDa), but tyrosine phosphorylation levels did not differ between the treatments. The inhibitor L-NAME decreased the percentage of acrosome-reacted sperm and phosphatidylserine translocation, whereas both L-NAME and AG reduced the sperm intracellular calcium concentration. Secondly, the role of NO on the interaction of gametes was evaluated in the presence or absence of cumulus cells. The addition of both L-NAME and AG during IVF induced a decrease in the percentage of penetrated oocytes, when the latter were surrounded by the cumulus cells. Nonetheless, when the cumulus cells were removed, the percentage of penetration was further diminished, becoming null in presence of the inhibitor L-NAME. In Chapter 2, the role of L-Arginine and FF was analyzed on the phosphorylation of serine, threonine and tyrosine residues in human spermatozoa and whether their effect was modified by the presence of a donor or inhibitors of NO synthesis. Four protein bands of ~ 110, ~ 87, ~ 75 and ~ 62 kDa showed a decrease in their phosphorylation degree when using NOS inhibitors, both in the presence or absence of L-Arginine and FF. Later, the affected proteins were identified, and it was observed that 29 of them were related to different reproductive processes: spermatogenesis, binding to the zona pellucida, energy and metabolism, stress response, motility and structural organization, signaling and protein turnover. In the final study (Chapter 3), the relationship between the FF levels of nitrite (NO2) and nitrate (NO3) in women participating in a gamete donation program and the quality of their oocytes was determined. Neither total nor MII oocyte yields were associated with the FF concentrations of NO2 and NO3. However, the proportion of MII oocytes was directly related to NO2 levels and inversely to NO3 levels. The results obtained in this doctoral thesis show the importance of NO on gametes and their interaction. In relation to porcine spermatozoa, it was observed that the localization of the NOS isoforms is different and that the inhibition of NO synthesis decreases the parameters involved in the capacitation process and the penetration of oocytes. As far as the human spermatozoa are concerned, the inhibition of NO synthesis leads to a decrease in the phosphorylation of proteins related to reproductive functions and, this effect is not reverted by the presence of L-Arginine or FF. In addition, the synthesis of NO in the FF of oocyte donors undergoing superovulation treatment is associated to the proportion of mature oocytes, but not to the total number of oocytes recovered after the treatmen

    Chapter Nitric Oxide: Key Features in Spermatozoa

    Full text link
    Several in vitro studies have pointed to the importance of nitric oxide (NO) in the female and male reproductive system in mammals. Its functions vary from preventing oocyte aging, improving the integrity of the microtubular spindle apparatus in aged oocytes, modulating the contraction of the oviduct, to regulating sperm physiology by affecting the motility, inducing chemotaxis in spermatozoa, regulating tyrosine phosphorylation, enhancing the sperm-zona pellucida binding ability, and modulating the acrosomal reaction. In spermatozoa, NO exerts its functions in different ways, which involve key elements such as the soluble isoform of guanylate cyclase, cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), adenylate cyclase, and the extracellular signal-regulated kinase (ERK) pathway. Furthermore, NO leads to the S-nitrosylation of several sperm proteins, among them a substantial group associated with energy generation and cell movement, but also with signal transduction, suggesting a role for S-nitrosylation in sperm motility and in modulating the sperm function, respectively. In this chapter, an overview of how NO modulates the sperm physiology is presented, based on the knowledge acquired to this day
    corecore