711 research outputs found
A dynamic nonstationary spatio-temporal model for short term prediction of precipitation
Precipitation is a complex physical process that varies in space and time.
Predictions and interpolations at unobserved times and/or locations help to
solve important problems in many areas. In this paper, we present a
hierarchical Bayesian model for spatio-temporal data and apply it to obtain
short term predictions of rainfall. The model incorporates physical knowledge
about the underlying processes that determine rainfall, such as advection,
diffusion and convection. It is based on a temporal autoregressive convolution
with spatially colored and temporally white innovations. By linking the
advection parameter of the convolution kernel to an external wind vector, the
model is temporally nonstationary. Further, it allows for nonseparable and
anisotropic covariance structures. With the help of the Voronoi tessellation,
we construct a natural parametrization, that is, space as well as time
resolution consistent, for data lying on irregular grid points. In the
application, the statistical model combines forecasts of three other
meteorological variables obtained from a numerical weather prediction model
with past precipitation observations. The model is then used to predict
three-hourly precipitation over 24 hours. It performs better than a separable,
stationary and isotropic version, and it performs comparably to a deterministic
numerical weather prediction model for precipitation and has the advantage that
it quantifies prediction uncertainty.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS564 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Malignant pleural mesothelioma: ESMO clinical recommendations for diagnosis, treatment and follow-up
- …