959 research outputs found

    The structures of natively assembled clathrin-coated vesicles

    Get PDF
    Clathrin-coated vesicles mediate trafficking of proteins and nutrients in the cell and between organelles. Proteins included in the clathrin-coated vesicles (CCVs) category include clathrin heavy chain (CHC), clathrin light chain (CLC), and a variety of adaptor protein complexes. Much is known about the structures of the individual CCV components, but data are lacking about the structures of the fully assembled complexes together with membrane and in complex with cargo. Here, we determined the structures of natively assembled CCVs in a variety of geometries. We show that the adaptor β2 appendages crosslink adjacent CHC β-propellers and that the appendage densities are enriched in CCV hexagonal faces. We resolve how adaptor protein 2 and other associated factors in hexagonal faces form an assembly hub with an extensive web of interactions between neighboring β-propellers and propose a structural model that explains how adaptor binding can direct the formation of pentagonal and hexagonal faces

    Integrating Remote Sensing with Ground-based Observations to Quantify the Effects of an Extreme Freeze Event on Black Mangroves (Avicennia germinans) at the Landscape Scale

    Get PDF
    Climate change is altering the frequency and intensity of extreme weather events. Quantifying ecosystem responses to extreme events at the landscape scale is critical for understanding and responding to climate-driven change but is constrained by limited data availability. Here, we integrated remote sensing with ground-based observations to quantify landscape-scale vegetation damage from an extreme climatic event. We used ground- and satellite-based black mangrove (Avicennia germinans) leaf damage data from the northern Gulf of Mexico (USA and Mexico) to examine the effects of an extreme freeze in a region where black mangroves are expanding their range. The February 2021 event produced coastal temperatures as low as − 10 °C in some areas, exceeding thresholds for A. germinans damage and mortality. We used Sentinel-2 surface reflectance data to assess vegetation greenness before and after the freeze, along with ground-based observations of A. germinans leaf damage. Our results show a negative, nonlinear threshold relationship between A. germinans leaf damage and minimum temperature, with a temperature threshold for leaf damage near − 6 °C. Satellite-based analyses indicate that, at the landscape scale, damage was particularly severe along the central Texas coast, where the freeze event affected \u3e 2000 ha of A. germinans-dominated coastal wetlands. Our analyses highlight the value of pairing remotely sensed data with regional, ground-based observations for quantifying and extrapolating the effects of extreme freeze events on mangroves and other tropical, cold-sensitive plants. The results also demonstrate how extreme freeze events govern the expansion and contraction of mangroves near northern range limits in North America

    Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    Get PDF
    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands

    Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex

    Get PDF
    Magnetic resonance spectroscopy (MRS) allows measurement of neurotransmitter concentrations within a region of interest in the brain. Inter-individual variation in MRS-measured GABA levels have been related to variation in task performance in a number of regions. However, it is not clear how MRS-assessed measures of GABA relate to cortical excitability or GABAergic synaptic activity. We therefore performed two studies investigating the relationship between neurotransmitter levels as assessed by MRS and transcranial magnetic stimulation (TMS) measures of cortical excitability and GABA synaptic activity in the primary motor cortex. We present uncorrected correlations, where the P value should therefore be considered with caution. We demonstrated a correlation between cortical excitability, as assessed by the slope of the TMS input-output curve and MRS-assessed glutamate levels (r = 0.803, P = 0.015) but no clear relationship between MRS-assessed GABA levels and TMS-assessed synaptic GABA(A) activity (2.5 ms inter-stimulus interval (ISI) short-interval intracortical inhibition (SICI); Experiment 1: r = 0.33, P = 0.31; Experiment 2: r = -0.23, P = 0.46) or GABA(B) activity (long-interval intracortical inhibition (LICI); Experiment 1: r = -0.47, P = 0.51; Experiment 2: r = 0.23, P = 0.47). We demonstrated a significant correlation between MRS-assessed GABA levels and an inhibitory TMS protocol (1 ms ISI SICI) with distinct physiological underpinnings from the 2.5 ms ISI SICI (r = -0.79, P = 0.018). Interpretation of this finding is challenging as the mechanisms of 1 ms ISI SICI are not well understood, but we speculate that our results support the possibility that 1 ms ISI SICI reflects a distinct GABAergic inhibitory process, possibly that of extrasynaptic GABA tone

    An open label, randomised controlled trial of rifapentine versus rifampicin based short course regimens for the treatment of latent tuberculosis in England: the HALT LTBI pilot study.

    Get PDF
    BACKGROUND: Ending the global tuberculosis (TB) epidemic requires a focus on treating individuals with latent TB infection (LTBI) to prevent future cases. Promising trials of shorter regimens have shown them to be effective as preventative TB treatment, however there is a paucity of data on self-administered treatment completion rates. This pilot trial assessed treatment completion, adherence, safety and the feasibility of treating LTBI in the UK using a weekly rifapentine and isoniazid regimen versus daily rifampicin and isoniazid, both self-administered for 12 weeks. METHODS: An open label, randomised, multi-site pilot trial was conducted in London, UK, between March 2015 and January 2017. Adults between 16 and 65 years with LTBI at two TB clinics who were eligible for and agreed to preventative therapy were consented and randomised 1:1 to receive either a weekly combination of rifapentine/isoniazid ('intervention') or a daily combination of rifampicin/isoniazid ('standard'), with both regimens taken for twelve weeks; treatment was self-administered in both arms. The primary outcome, completion of treatment, was self-reported, defined as taking more than 90% of prescribed doses and corroborated by pill counts and urine testing. Adverse events were recorded. RESULTS: Fifty-two patients were successfully enrolled. In the intervention arm 21 of 27 patients completed treatment (77.8, 95% confidence interval [CI] 57.7-91.4), compared with 19 of 25 (76.0%, CI 54.9-90.6) in the standard of care arm. There was a similar adverse effect profile between the two arms. CONCLUSION: In this pilot trial, treatment completion was comparable between the weekly rifapentine/isoniazid and the daily rifampicin/isoniazid regimens. Additionally, the adverse event profile was similar between the two arms. We conclude that it is safe and feasible to undertake a fully powered trial to determine whether self-administered weekly treatment is superior/non-inferior compared to current treatment. TRIAL REGISTRATION: The trial was funded by the NIHR, UK and registered with ISRCTN ( 26/02/2013-No.04379941 )

    An open label, randomised controlled trial of rifapentine versus rifampicin based short course regimens for the treatment of latent tuberculosis in England: the HALT LTBI pilot study

    Get PDF
    BACKGROUND: Ending the global tuberculosis (TB) epidemic requires a focus on treating individuals with latent TB infection (LTBI) to prevent future cases. Promising trials of shorter regimens have shown them to be effective as preventative TB treatment, however there is a paucity of data on self-administered treatment completion rates. This pilot trial assessed treatment completion, adherence, safety and the feasibility of treating LTBI in the UK using a weekly rifapentine and isoniazid regimen versus daily rifampicin and isoniazid, both self-administered for 12 weeks. METHODS: An open label, randomised, multi-site pilot trial was conducted in London, UK, between March 2015 and January 2017. Adults between 16 and 65 years with LTBI at two TB clinics who were eligible for and agreed to preventative therapy were consented and randomised 1:1 to receive either a weekly combination of rifapentine/isoniazid ('intervention') or a daily combination of rifampicin/isoniazid ('standard'), with both regimens taken for twelve weeks; treatment was self-administered in both arms. The primary outcome, completion of treatment, was self-reported, defined as taking more than 90% of prescribed doses and corroborated by pill counts and urine testing. Adverse events were recorded. RESULTS: Fifty-two patients were successfully enrolled. In the intervention arm 21 of 27 patients completed treatment (77.8, 95% confidence interval [CI] 57.7-91.4), compared with 19 of 25 (76.0%, CI 54.9-90.6) in the standard of care arm. There was a similar adverse effect profile between the two arms. CONCLUSION: In this pilot trial, treatment completion was comparable between the weekly rifapentine/isoniazid and the daily rifampicin/isoniazid regimens. Additionally, the adverse event profile was similar between the two arms. We conclude that it is safe and feasible to undertake a fully powered trial to determine whether self-administered weekly treatment is superior/non-inferior compared to current treatment. TRIAL REGISTRATION: The trial was funded by the NIHR, UK and registered with ISRCTN ( 26/02/2013-No.04379941 )

    Latent tuberculosis infection screening and treatment in congregate settings (TB FREE COREA): protocol for a prospective observational study in Korea

    Get PDF
    IntroductionSouth Korea regards tuberculosis (TB) incidence in congregate settings as a serious problem. To this end, systematic latent TB infection (LTBI) diagnosis and treatment were provided to approximately 1.2 million individuals in high-risk congregate settings.Methods and analysisWe designed a prospective cohort study of individuals tested for LTBI, based on the data collected on all persons screened for LTBI as part of the 2017 congregate settings programme in South Korea. Four types of databases are kept: LTBI screening database (personal information and LTBI test results), national health information (NHI) database (socio-demographic data and comorbidities), public healthcare information system (PHIS) database, and the Korean national TB surveillance system database (TB outcomes). Information regarding LTBI treatment at private hospitals and public health centres is collected from NHI and PHIS databases, respectively. The screening data are cleaned, duplicates are removed, and, where appropriate, re-coded to analyse specific exposures and outcomes. The primary objective is to compare the number of active TB cases prevented within 2 years between participants undergoing treatment and not undergoing treatment in the LTBI screening programme in congregate settings. Cascade of care for LTBI diagnosis and treatment will be evaluated among those with a positive LTBI test result. A Cox proportional hazards model will be applied to determine the risk factors for developing active TB.Ethics and disseminationThe protocol is approved by the institutional review boards of Incheon St. Mary’s Hospital, the Catholic University of Korea. Study results will be disseminated through peer-reviewed journals and conference presentations.Trial registration numberKCT000390

    Influence of Nanoparticle Size and Shape on Oligomer Formation of an Amyloidogenic Peptide

    Full text link
    Understanding the influence of macromolecular crowding and nanoparticles on the formation of in-register β\beta-sheets, the primary structural component of amyloid fibrils, is a first step towards describing \emph{in vivo} protein aggregation and interactions between synthetic materials and proteins. Using all atom molecular simulations in implicit solvent we illustrate the effects of nanoparticle size, shape, and volume fraction on oligomer formation of an amyloidogenic peptide from the transthyretin protein. Surprisingly, we find that inert spherical crowding particles destabilize in-register β\beta-sheets formed by dimers while stabilizing β\beta-sheets comprised of trimers and tetramers. As the radius of the nanoparticle increases crowding effects decrease, implying smaller crowding particles have the largest influence on the earliest amyloid species. We explain these results using a theory based on the depletion effect. Finally, we show that spherocylindrical crowders destabilize the ordered β\beta-sheet dimer to a greater extent than spherical crowders, which underscores the influence of nanoparticle shape on protein aggregation

    Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    Get PDF
    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature- induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands

    Climate and plant controls on soil organic matter in coastal wetlands

    Get PDF
    Coastal wetlands are among the most productive and carbon‐rich ecosystems on Earth. Long‐term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 estuaries that span broad temperature and precipitation gradients. Our results highlight the importance of climate–plant controls and indicate that the influence of elevation is scale and location dependent. Coastal wetland plants are sensitive to climate change; small changes in temperature or precipitation can transform coastal wetland plant communities. Across the region, SOM was greatest in mangrove forests and in salt marshes dominated by graminoid plants. SOM was lower in salt flats that lacked vascular plants and in salt marshes dominated by succulent plants. We quantified strong relationships between precipitation, salinity, plant productivity, and SOM. Low precipitation leads to high salinity, which limits plant productivity and appears to constrain SOM accumulation. Our analyses use data from the Gulf of Mexico, but our results can be related to coastal wetlands across the globe and provide a foundation for predicting the ecological effects of future reductions in precipitation and freshwater availability. Coastal wetlands provide many ecosystem services that are SOM dependent and highly vulnerable to climate change. Collectively, our results indicate that future changes in SOM and plant productivity, regulated by cascading effects of precipitation on freshwater availability and salinity, could impact wetland stability and affect the supply of some wetland ecosystem services
    corecore