70 research outputs found

    Structural and functional insights into enzymes of the vitamin K cycle

    Get PDF
    Vitamin K-dependent proteins require carboxylation of certain glutamates for their biological functions. The enzymes involved in the vitamin K-dependent carboxylation include: gamma-glutamyl carboxylase (GGCX), vitamin K epoxide reductase (VKOR) and an as-yet-unidentified vitamin K reductase (VKR). Due to the hydrophobicity of vitamin K, these enzymes are likely to be integral membrane proteins that reside in the endoplasmic reticulum. Therefore, structure-function studies on these enzymes have been challenging, and some of the results are notably controversial. Patients with naturally occurring mutations in these enzymes, who mainly exhibit bleeding disorders or are resistant to oral anticoagulant treatment, provide valuable information for the functional study of the vitamin K cycle enzymes. In this review, we discuss: (i) the discovery of the enzymatic activities and gene identifications of the vitamin K cycle enzymes; (ii) the identification of their functionally important regions and their active site residues; (iii) the membrane topology studies of GGCX and VKOR; and (iv) the controversial issues regarding the structure and function studies of these enzymes, particularly, the membrane topology, the role of the conserved cysteines and the mechanism of active site regeneration of VKOR. We also discuss the possibility that a paralogous protein of VKOR, VKOR-like 1 (VKORL1), is involved in the vitamin K cycle, and the importance of and possible approaches for identifying the unknown VKR. Overall, we describe the accomplishments and the remaining questions in regard to the structure and function studies of the enzymes in the vitamin K cycle

    Extravascular FIX and coagulation

    Get PDF
    This review summarizes the evidence that collagen IV binding is physiologically important, and that the extravascular compartment of FIX is composed of type IV collagen. As we have previously demonstrated, 7 days post-infusion, FIXWT (BeneFIX) is able to control bleeding as well as the same dosage of Alprolix in hemophilia B mice, tested using the saphenous vein bleeding model (Alprolix is a chimeric FIX molecule joined at its C terminus to a Fc domain). Furthermore, we have shown that in hemophilia B mice, doses of BeneFIX or Alprolix (up to a dose of 150 IU/kg) have increased bleeding-control effectiveness in proportion to the dose up to a certain limit: higher doses are no more effective than the 150 IU/kg dose. These studies suggest that in hemophilia B mice, tested using the saphenous vein bleeding model, three things are true: first, extravascular FIX is at least as important for coagulation as is circulating FIX; second, measuring circulating levels of FIX may not be the best criterion for designing new “longer lasting” FIX molecules; and third, trough levels are less diagnostic for FIX therapy than they are for FVIII therapy

    Human Factor IX Binds to Specific Sites on the Collagenous Domain of Collagen IV

    Get PDF
    The primary region of factor IX that mediates binding to bovine aortic endothelial cells resides in residues 3-11 of the N-terminal region known as the Gla domain. Recently, it was proposed that the observed binding to endothelial cells is actually a measure of the interaction between factor IX and collagen IV (Cheung, W. F., van den Born, J., Kuhn, K., Kjellen, L., Hudson, B. G., and Stafford, D. W. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11068-11073). To confirm that factor IX binds to collagen IV and to examine the specificity of this interaction, we used scanning force microscopy to examine factor IX binding to collagen IV. We imaged collagen IV in the presence and the absence of factor IX and observed specific interactions between factor IX and collagen IV. Our results demonstrate that factor IX binds to collagen IV at specific sites in the collagenous domain approximately 98 and approximately 50 nm from the C-terminal pepsin-cleaved end

    Nucleotide sequence of a 5S ribosomal RNA gene in the sea urchin Lytechinus variegatus

    Get PDF
    The nucleotide sequence of a cloned DNA fragment corresponding to a gene for 5S ribosomal RNA from the sea urchi

    Conserved Loop Cysteines of Vitamin K Epoxide Reductase Complex Subunit 1-like 1 (VKORC1L1) Are Involved in Its Active Site Regeneration

    Get PDF
    Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions

    Mycobacterium tuberculosis Vitamin K Epoxide Reductase Homologue Supports Vitamin K–Dependent Carboxylation in Mammalian Cells

    Get PDF
    Aims: Vitamin K epoxide reductase complex, subunit 1 (VKORC1) is a critical participant in the production of active forms of reduced vitamin K and is required for modification of vitamin K–dependent proteins. Homologues of VKORC1 (VKORH) exist throughout evolution, but in bacteria they appear to function in oxidative protein folding as well as quinone reduction. In the current study we explore two questions: Do VKORHs function in the mammalian vitamin K cycle? Is the pair of loop cysteines—C43 and C51 in human VKORC1—conserved in all VKORC1s, essential for the activity of vitamin K epoxide reduction? Results: We used our recently developed cell-based assay to compare the function of VKORHs to that of human VKORC1 in mammalian cells. We identified for the first time a VKORH (from Mycobacterium tuberculosis [Mt-VKORH]) that can function in the mammalian vitamin K cycle with vitamin K epoxide or vitamin K as substrate. Consistent with our previous in vitro results, the loop cysteines of human VKORC1 are not essential for its activity in vivo. Moreover, the corresponding loop cysteines of Mt-VKORH (C57 and C65), which are essential for its activity in disulfide bond formation during protein folding in Escherichia coli, are not required in the mammalian vitamin K cycle. Innovation and Conclusions: Our results indicate that VKORC1 in eukaryotes and Mt-VKORH in bacteria, that is, in their respective native environments, employ apparently different mechanisms for electron transfer. However, when Mt-VKORH is in the mammalian cell system, it employs a mechanism similar to that of VKORC1. Antioxid. Redox Signal. 16, 329–338

    Binding of the Factor IX Îł-Carboxyglutamic Acid Domain to the Vitamin K-dependent Îł-Glutamyl Carboxylase Active Site Induces an Allosteric Effect That May Ensure Processive Carboxylation and Regulate the Release of Carboxylated Product

    Get PDF
    Propeptides of the vitamin K-dependent proteins bind to an exosite on gamma-glutamyl carboxylase; while they are bound, multiple glutamic acids in the gamma-carboxyglutamic acid (Gla) domain are carboxylated. The role of the propeptides has been studied extensively; however, the role of the Gla domain in substrate binding is less well understood. We used kinetic and fluorescence techniques to investigate the interactions of the carboxylase with a substrate containing the propeptide and Gla domain of factor IX (FIXproGla41). In addition, we characterized the effect of the Gla domain and carboxylation on propeptide and substrate binding. For the propeptide of factor IX (proFIX18), FIXproGla41, and carboxylated FIXproGla41, the Kd values were 50, 2.5, and 19.7 nM and the koff values were 273 x 10(-5), 9 x 10(-5), and 37 x 10(-5) s(-1), respectively. The koff of proFIX18 is reduced 3-fold by FLEEL and 9-fold by the Gla domain (residues 1-46) of FIX. The pre-steady state rate constants for carboxylation of FIXproGla41 was 0.02 s(-1) in enzyme excess and 0.016 s(-1) in substrate excess. The steady state rate in substrate excess is 4.5 x 10(-4) s(-1). These results demonstrate the following. 1) The pre-steady state carboxylation rate constant of FIXproGla41 is significantly slower than that of FLEEL. 2) The Gla domain plays an allosteric role in substrate-enzyme interactions. 3) Carboxylation reduces the allosteric effect. 4) The similarity between the steady state carboxylation rate constant and product dissociation rate constant suggests that product release is rate-limiting. 5) The increased dissociation rate after carboxylation contributes to the release of product

    Human Vitamin K Epoxide Reductase and Its Bacterial Homologue Have Different Membrane Topologies and Reaction Mechanisms

    Get PDF
    Vitamin K epoxide reductase (VKOR) is essential for the production of reduced vitamin K that is required for modification of vitamin K-dependent proteins. Three- and four-transmembrane domain (TMD) topology models have been proposed for VKOR. They are based on in vitro glycosylation mapping of the human enzyme and the crystal structure of a bacterial (Synechococcus) homologue, respectively. These two models place the functionally disputed conserved loop cysteines, Cys-43 and Cys-51, on different sides of the endoplasmic reticulum (ER) membrane. In this study, we fused green fluorescent protein to the N or C terminus of human VKOR, expressed these fusions in HEK293 cells, and examined their topologies by fluorescence protease protection assays. Our results show that the N terminus of VKOR resides in the ER lumen, whereas its C terminus is in the cytoplasm. Selective modification of cysteines by polyethylene glycol maleimide confirms the cytoplasmic location of the conserved loop cysteines. Both results support a three-TMD model of VKOR. Interestingly, human VKOR can be changed to a four-TMD molecule by mutating the charged residues flanking the first TMD. Cell-based activity assays show that this four-TMD molecule is fully active. Furthermore, the conserved loop cysteines, which are essential for intramolecular electron transfer in the bacterial VKOR homologue, are not required for human VKOR whether they are located in the cytoplasm (three-TMD molecule) or the ER lumen (four-TMD molecule). Our results confirm that human VKOR is a three-TMD protein. Moreover, the conserved loop cysteines apparently play different roles in human VKOR and in its bacterial homologues

    Identification of a Drosophila Vitamin K-dependent Îł-Glutamyl Carboxylase

    Get PDF
    Using reduced vitamin K, oxygen, and carbon dioxide, gamma-glutamyl carboxylase post-translationally modifies certain glutamates by adding carbon dioxide to the gamma position of those amino acids. In vertebrates, the modification of glutamate residues of target proteins is facilitated by an interaction between a propeptide present on target proteins and the gamma-glutamyl carboxylase. Previously, the gastropod Conus was the only known invertebrate with a demonstrated vitamin K-dependent carboxylase. We report here the discovery of a gamma-glutamyl carboxylase in Drosophila. This Drosophila enzyme is remarkably similar in amino acid sequence to the known mammalian carboxylases; it has 33% sequence identity and 45% sequence similarity to human gamma-glutamyl carboxylase. The Drosophila carboxylase is vitamin K-dependent, and it has a K(m) toward a model pentapeptide substrate, FLEEL, of about 4 mm. However, unlike the human gamma-glutamyl carboxylase, it is not stimulated by human blood coagulation factor IX propeptides. We found the mRNA for Drosophila gamma-glutamyl carboxylase in virtually every embryonic and adult stage that we investigated, with the highest concentration evident in the adult head

    The Propeptide Binding Site of the Bovine Îł-Glutamyl Carboxylase

    Get PDF
    gamma-Glutamyl carboxylase is an integral membrane protein required for the posttranslational modification of vitamin K-dependent proteins. The main recognition between the enzyme and its substrates is through an 18-amino acid propeptide. It has been reported that this binding site resides in the amino-terminal third of the gamma-glutamyl carboxylase molecule (Yamada, M., Kuliopulos, A., Nelson, N. P., Roth, D. A., Furie, B., Furie, B. C., and Walsh, C. T. (1995) Biochemistry 34, 481-489). In contrast, we found the binding site in the carboxyl half of the gamma-glutamyl carboxylase. We show that the carboxylase may be cleaved by trypsin into an amino-terminal 30-kDa and a carboxyl-terminal 60-kDa fragment joined by a disulfide bond(s), and the propeptide binds to the 60-kDa fragment. The sequence of the amino terminus of the 60-kDa fragment reveals that the primary trypsin-sensitive sites are at residues 349 and 351. Furthermore, the tryptic fragment that cross-links to the propeptide also reacts with an antibody specific to the carboxyl portion of the gamma-glutamyl carboxylase. In addition, cyanogen bromide cleavage of bovine gamma-glutamyl carboxylase cross-linked to the peptide comprising residues TVFLDHENANKILNRPKRY of human factor IX yields a cross-linked fragment of 16 kDa from the carboxyl half of the molecule, the amino-terminal sequence of which begins at residue 438. Thus, the propeptide binding site lies carboxyl-terminal to residue 438 and is predicted to be in the lumen of the endoplasmic reticulum
    • …
    corecore